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Abstract— Service robots need many different informations
about the objects, they want to grasp and manipulate. Besides
the physical information such as geometry and weight, semantic
information about the objects is also needed. To model both of
these types of information, we have constructed a multimodal
object modeling center. It enables the modeling of physical
properties of the object, such as the textures and the 3D
geometry, with a digitizer and a pair of movable stereo cameras.
Other properties of the objects relevant for grasping can also
be automatically computed. Furthermore, a human teacher can
communicate with the system through multimodal techniques
to introduce the semantic information relevant grasping to the
system. We have implemented a grasp planning system based
on the grasp simulator “GraspIt!” to plan high quality grasps.
The semantic information is represented as shape primitives,
which are treated by the grasp planning as obstacles or must-
touch regions of the object to influence the resulting grasps.
The modeled physical, semantic and automatically computed
information, together with the computed grasps are saved
in a database, which provides the service robot the needed
knowledge to grasp and manipulate various household objects.

Index Terms— grasp planning, manipulation

I. INTRODUCTION

Grasping and manipulation are the key functions of service
robots to help people with their household tasks. To grasp and
manipulate real world objects, detailed information about the
objects needs to be made available to the robot system, so that
the robot can autonomously detect, localize and manipulate
them. In this paper, we present an automatic grasp planning
system with an object modeling system, which can model the
objects in a household environment and compute matching
grasps for these objects.

To grasp and manipulate objects, a service robot needs
a variety of information about the real world. It needs the
position and the orientation of the object to be grasped, which
can be computed by object localization algorithms using
color cameras. These algorithms need further appearance
information like the textures of the object. The geometric
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Fig. 1. A Service robot with two KUKA LWR Arms and two Schunk
Anthromorph Hands which can grasp typical objects in household.

model of the object should be available as well, to plan the
region where the robot can touch and grasp the object. The
material properties are very important to assume the friction
coefficient between the robotic finger and the object. The
weight of the object should also be considered during the
manipulation. To perform the grasp safely, the robot needs
also information about the surroundings of the object.

The information listed above can be gathered with suitable
sensors such as laser scanners or color cameras. There is
however other functional, user-specific or semantic knowl-
edge, which is difficult to obtain without human help. For
example, how can a robot know, that a cup should be kept
upright during the transport, if it is filled with water? Humans
are able to interact with their environment in a very successful
way because they have a very detailed model of all the things
surrounding them. While growing up we acquire a vast set of
different informations describing many aspects of items we
see and use, ranging from appearance over haptic sensations,
texture and smell, to such abstract terms like containers.
To enable a robotic system to use such information for
manipulation tasks, it is important to find ways how a human
can transfer his/her knowledge about the world to a robot in
an efficient and easy way. Semantic object modeling is a
method to achieve this for a part of the available knowledge.
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In the described scenario this means that we focus on object
knowledge that is crucial to grasping and manipulating.

We have constructed an object modeling center to model
these physical properties of the objects in the household
for service robots [1]. A digitizer scans the 3D geometry
model of the object, which is placed on a rotational turntable.
A movable stereo camera system is used to take images
of the object from different viewpoints. A human teacher
can communicate with the system in an intuitive way to
model the semantic information. Microphones are used for
speech recognition. A magnetic field tracker allows the user
to demonstrate manipulation operations to the system. All of
these informations about the objects are saved in an object
database. Other informations of the object such as stable
grasps for specific robotic hands will be further computed
automatically and also saved into the object database. The
goal is to create a knowledge base for the service robots, so
that they can grasp and manipulate a large variety of known
household objects.

The modeled information is used by an automatic grasp
planning system to plan high quality and executable grasps.
The grasp planning system deals with mainly four problems:
grasp planning tries to find the configuration of the robotic
hand in which the hand grasps the object with contact
points between the fingers and the object surface. These
contact points are evaluated by grasp analysis to check if
the object can be held firmly and save, also in the presence
of disturbances acting on it. In this phase, the approximation
of the possible forces that can be applied by the hand onto
the object is commonly used to rate the grasp. To get the
discrete forces which act “optimal” on the object is the
problem of grasp force optimization. After the optimal forces
are computed, they are performed by grasp execution. After
the computation, the planned grasps are also saved into the
object database, so that the robot can (re-)use this knowledge
at run time to grasp the object, as shown in Fig. 1.

Main contributions of this paper are:

1) The concept and the setup of a semantic object mod-
eling system, which can gather not only the physical
properties of the objects with suitable sensors, but
also the semantic information by exploiting human
knowledge.

2) An automatic grasp planning system uses this informa-
tion to plan high quality grasps for robotic hands.

3) Objects in a household environment can be grasped
after the introduced modeling and computation process.

The paper is laid out as follows: the next section intro-
duces our grasp planning system. The used hardware in the
modeling center and the semantic object modeling process is
introduced in Sec. III. Experimental results are presented in
Sec. IV. The work is summarized in Sec. V.

II. GRASP PLANNING SYSTEM
A. State of the art

Grasp planning deals with a high dimensional space.
Besides the internal degrees of freedom of the robotic hand,
the relative position and orientation between hand and object
are also to be considered. Grasp planning tries to find the
connection between a configuration in this high dimensional
space and the contact points, which will be used to evaluate
the grasp quality. The grasp planning problem can be solved
in either forward or backward direction. The forward solution
involves the finger forward kinematic to close the fingers and
uses the collision detection technique to detect the finger joint
positions at collision, such as the grasp planning simulator
“Grasplt!” [2]. Miller et al. [3] have used hand preshapes
before grasping to shrink the hand configuration space. The
relative position and orientation between hand and object
are reduced to grasp starting positions and directions for the
robotic hand in the simulation, which are generated using
shape primitives decomposed from the object’s geometric
model. This decomposition from arbitrary object geometry to
shape primitives, such as spheres, boxes, cylinders or cones,
can not be performed in an automatic way. From the point
clouds of the object, superquadrics [4] and minimum volume
bounding boxes [5] were introduced to generate the approach
directions, which do not need manual decomposition of
the object and can be done automatically. The backward
method is object centered. Contact points are randomly [6] or
analytically located on the object surface to evaluate the grasp
quality, without considerations about the hand kinematic. If
the grasp quality is high, an inverse kinematic algorithm for
the finger is used to find the corresponding feasible finger
joint position. The collision between the fingers should be
further checked to avoid self collision [7]. A main drawback
is here, however, the inverse kinematic algorithm needs an
unambiguous position of the contact point. This limits the
grasps found to be only with fingertips, whereas a grasp with
more than one contact points by one finger can be found
by the forward method so that the object can be grasped
more firmly. Because the finger joint positions are determined
without consideration of collision, the backward method can
not find collision free feasible grasps in the presence of
obstacles.

After a grasp is found, its grasp quality is rated with
some given criteria using the contact points found in the
grasp planning step. To check if the object can be grasped
firmly in the hand, both the forces and the torques are to
be considered. With a fixed reference point to the object,
the torque acting onto the object by the modeled force can
also be computed, which together with the force forms a 6D
vector wrench. The force closure and form closure properties
have been intensively studied in the past. A force closure
grasp can apply a wrench required to resist any external
disturbances. If and only if a grasp with frictionless point



contact model achieves force closure, it is also form closure,
where the grasp completely immobilizes the grasped object
[8]. Another often used grasp quality is measured considering
the largest perturbation wrench that the grasp can resist with
independence of the perturbation direction (largest sphere in
the grasp wrench space) using point contact with friction
(PCWEF) as contact model [9]. By grasp quality computation,
the possible forces acting at the contact points are used to
quantify a grasp, the exact direction and magnitude of the
forces are to be optimized. Based on the observation by Buss,
Hashimoto and Moore [10] that the nonlinear friction cone
constraints can be transformed into positive definiteness con-
straints imposed on certain symmetric matrices, Han, Trinkle
and Li [11] have further written the positive definiteness as
a linear combination of matrices. The contact force opti-
mization problem can then be solved using the determinant
maximization as a linear matrix inequalities problem. These
two works, solving as linear matrix inequalities and gradient
method, were combined very well by Liu and Li [12] with
a solution for the initialization. These optimized forces can
be applied onto the object by joint torque impedance control
[13].

B. Implemented grasp planning system

The grasp simulator “Grasplt!” [2] is used to plan high
quality grasps. In this simulation, the modeled robotic hand
is set to a preshape with finger postures at a starting po-
sition and along an approach direction towards the object.
Hand preshapes with different finger postures for the Schunk
Anthropomorphic Hand (SAHand) [14] have been defined.
Superquadrics are computed automatically from the object’s
scanned point clouds by a split-and-merge algorithm. The
surface function of the generated superquadrics is sampled to
compute the approach directions and the starting positions.
The approach direction is defined as the opposite direction
of the normal at the sampled point, towards the object. The
starting position for the hand is defined at the sampled point a
small distance away from the object, so that the hand does not
collide with the object initially, see Fig. 2.. Compared to the
method introduced in [3], this process does not need manual
decomposition of the object and can be done automatically.

During hand moving and finger closing, it is desired to
find the first contact point between the robotic hand and
the object using the collision detection technique. This is
a problem of continuous collision detection, which does not
only check the collision between two static objects, but also
takes into account the relative motion between them and
finds the first time of contact (TOC). Compared to discrete
collision detection, continuous collision detection does not
miss collisions between too fast moving objects or between
very thin objects. In [2], a Newton-Raphson method was used
to find the contact point with the complexity of O(logn).
We have integrated a continuous collision detection library
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Fig. 2. Hierarchical decomposition of the object in multiple superquadrics,
which are used to generate the approach direction for grasp planning as
introduced in [4].

based on conservative advancement [15], [16] into “Grasplt!”
to find all the contact points. Conservative advancement
[17] is an efficient method to approximate two objects to
each other. It uses an upper bound of the relative motion
and the distances between the two objects in each time
step to approximate them without collision. In the next
iteration step, the moving object is placed at the computed
position, until the distance between them is smaller than a
predefined distance threshold, with which the objects are
treated as colliding and the contact point between them is
found. Zhang et al. [18] uses conservative advancement to
compute contact points and extends the supported objects
from convex to non-convex polyhedrons. The work is further
extended to articulated models [16] with Taylor models and
temporal culling. The collision between one finger link and
one object can be computed within only a few iterations. Its
complexity is reduced to a constant value, O(1) ~ 2.1 in
our tests, with 0.1mm as the distance threshold. With the
efficient continuous collision detection technique, each grasp
candidate can be computed within only 50msecs.
The closing algorithm works as follows:

1) Move robot hand with the preshape from the starting
position along the approach direction to the object until
it collides with the object. Only one TOC query is
needed.

2) Try to close each finger separately by one TOC query.
If a link collides the object, move the following links
beneath the colliding link.

3) The algorithm stops, if all fingers are colliding with the
object or reach their maximal joint positions.

After the object is grasped, the contact points between the
hand and the object are collected to evaluate the grasp quality.
“Largest sphere in grasp wrench space” is used as the grasp
quality measurement [9]. The algorithm by Han et al. [11]
is further used to compute the optimal contact force as a
linear matrix inequality problem. At execution time, such



Fig. 3. Object modeling center for object digitization

computed optimal contact force is applied onto the object
by joint torque based impedance control of the fingers [13].
The torque values 7, at the finger joints 6 are computed
from the resulting optimal contact wrenches w of the force
optimization:

JT(0)w + g(0) = Taer 1)

with JT(6) being the transpose of the hand Jacobian and
external load ¢(#), such as gravity. To let the fingers apply
Tact> W€ use embedded joint torque based impedance control,
based on the following well-known control scheme:

7 =M+ DO+ K(Op; —6) )

with positive definite matrices M, D and K representing
the virtual inertia, damping and stiffness of the system and
Orcy being the commanded joint position. After the object
is grasped in the hand, the fingers are in steady state, such
that = 0 = 0, T = T4ct, and we receive the reference joint
positions for the impedance control:

o'ref =0+ K_lTact 3)

It is to notice that with the same virtual inertia, damping and
stiffness parameters, the computed reference joint positions
of the fingers do not change. The found contact point
information, the finger joint positions with which the hand
and the object collide and the reference joint positions for
the impedance control are all saved in the database.

III. SEMANTIC OBJECT MODELING
A. 3D geometry as a modeling basis

Since humans in general heavily rely on their vision to gain
information about the environment, a visual representation
during the whole modeling process is very beneficial. To
exploit this we need a visual representation of the objects
in question to display to the user during modeling to enable
direct feedback. Geometry is also crucial for grasp planning
and evaluation, which means that it would be very beneficial

Fig. 4.
planning with human help. The informations that the object has a rotational
part and the rotational axis of it are interactive modeled.

Digitized object with texture and planned grasp by the grasp

to be able to quickly generate a geometric representation of
a real world object.

To generate these representations an object modeling cen-
ter (see Fig. 3) was built which employs a Minolta Vi-900
digitizer, a turntable and a pair of Marlin cameras to scan
real world objects and recreate their geometry and texture.
The objects are put on the turntable and are rotated for
different view points. First, the geometry of the object is
acquired using the Minolta digitizer. It has a resolution of
640 x 480 with less than 0.2 mm error distance. Registration
and further editing of the point clouds as well as triangulation
is done with a software based on the commercial library
“Rapidform.dll” [19]. When the geometric representation
is complete, the color stereo camera images with a high
resolution of 1392 x 1038 pixels are taken from different
angles. In this case, both the object can be rotated, and the
camera system is mounted to a rotating bracket which can
turn up and down (between —25 and 75 degrees, compared
to a level angle). This allows us to get views e.g. into a
cup from above. With high precision calibration between the
turntable, the rotating bracket, the stereo cameras and the
digitizer, these images can then be mapped to the geometry
as a texture. This setup can create highly detailed 3D models
of many kinds of objects (see e.g. Fig. 4). The 3D models
generated this way are the basis for the following modeling
process and grasp planning. The generated textured models
are also published in a publicly accessible web database [20].
Anyone interested can download textured meshes and camera
images modeled by this system.

B. Object knowledge for grasping

After the object geometry is modeled, some geometric
properties and representations of the object can be directly
computed. The stable planes of the object and its middle
planes are used for the grasp planning.

If an object is placed on a horizontal table, the face



Fig. 5.

Top left: planing bimanual grasps using middle planes. Top right:
real execution, the object is grasped by left hand. Lower left: the object is
delivered from left to the right hand. Lower right: the object is placed by
the right hand.

of its convex hull in contact with the table is a stable
plane. The stable plane can be interactively modeled [21],
or automatically computed by projecting the center of mass
of the object onto faces of its convex hull [22]. During grasp
planning, one of the stable planes is placed in the grasp
simulation as an obstacle to plan grasps that do not collide
with such a stable plane. This way, feasible grasps for all
possible poses of the object on a table are found. Also, the
combination of two stable planes are now placed together
in the simulation to find other collision free grasps. These
grasps can be used to plan regrasp operations to change the
object pose by only one hand [22].

The bounding box of the object can be easily computed
from its geometric data. The three middle planes of the
object represent a simple decomposition of the object. If the
object is too big for the robotic hand, this decomposition
can be used to plan bimanual grasps. A plane is placed at
the middle of the object and treated as an obstacle. Grasps
for the left and right hand without collision with the plane
can be computed separately. If force closure grasps of the
two hands can be found, they can be combined arbitrarily
because the two hands do not collide with each other, due to
the decomposition by the middle plane. This kind of bimanual
grasps are used to hand over the object from one hand to the
other, as depicted in Fig. 5.

C. Semantic knowledge for grasping

Besides the object properties analyzed above, several other
object properties can have a big impact on how an object is
grasped best. If the object possesses an opening e.g. like
a cup and one would like to pour some milk into the cup
while holding it, grasping the cup in such a way that the
hand is covering the opening would be very impractical

Fig. 6. Possible 3D representations of semantic object properties. From left
to right: movable part with rotation axis; opening for pouring; decomposition
to separable parts.

[23]. Or maybe if a hot pan should be moved from one
place to another, the hot part should not be grasped but
rather the handle should be used for that action. How can
a robot system incorporate that knowledge into its grasp
planning to avoid these pitfalls and use reasonable grasps
for all the different objects? Again our paradigm is that a
human already knows how to do that and he can share that
knowledge with the robot. Since grasp planning is commonly
done on a 3D geometrical representation of an object it seems
only natural to incorporate that kind of information into
that representation so it can easily be extracted to influence
grasp planning in a positive way. To achieve that we propose
the creation of several special 3D shape primitives that
correspond to different object properties affecting grasping.
A human “teacher” can then use and adapt these primitives
to a given object to ensure proper description of the object’s
uniqueness. The exact number and shape of the primitives is
still subject of research, but a set of possible primitives can be
seen in Fig. 6. The idea is to create a modeling environment
in which a human user can use the real object to demonstrate
to the system the different properties in a natural way by
using pointing and other gestures. The semantic information
is represented by such primitives for the grasp planning. The
primitives are treated either as obstacles or as parts of the
object. With the primitives as obstacles, the covered region
of the object, such as the opening part of a cup, will not be
touched by the hand. If the primitives are treated as part of
the grasp, after a feasible grasp is found, only the grasps that
collide with the primitive are desired ones. This is to make
the hand to grasp only in the selected region of the object.

To manage and use the modeled semantic information
is beyond the scope of this paper. In the current system,
the modeled semantic information is used to influence the
automatically planned grasps and save it into the object
database. During the real execution, the robot can use the
semantic and context information to access and use the saved
grasps for specific tasks.



IV. EXPERIMENTAL RESULTS

Currently, more than 40 objects have been modeled at
the modeling center. Grasps for all of the objects can be
automatically computed and are saved into the database.
Some of the system-known objects are depicted in Fig. 1.
The grasps for the objects in the grasp database contain the
grasps for left and right SAHand. The number of the saved
grasps ranges from 200 to 600. If the object is placed on the
table and well reachable by the arm, it can be grasped, no
matter what orientation it has. By the use of stable planes,
such grasps are computed and saved in the grasp database.

We have tested the introduced system together with object
localization, grasping and environment modeling [24]. After
the object is localized based on its SIFT features, a grasp for
the object is searched in the grasp database, which can be
performed by the robotic arm without any collision with the
environment. For placing, the reverse process of grasping, it
is also checked, if the placing operation can be executed col-
lision free. After a feasible grasp is found, where the fingers
of the robotic hand only collide with the object at desired
contact points and without any other collision between the
robot and the environment, a probabilistic collision free path
planner [25] is used to bring the robotic arm to the starting
position. After the object is grasped, it is also treated as part
of the kinematic chain for the following collision free path
planning to avoid collisions between the grasped object in
the hand and the obstacles.

V. CONCLUSION AND FUTURE WORK

In this paper, an automatic grasp planning system with
object modeling center was presented. It provides a service
robot knowledge about the objects in a household, such as
a 3D model of the object, how the object can be grasped
by a robotic hand and the appearance of the object for
visual localization. Other semantic, user-specific and context
knowledge can also be modeled interactively by the user at
the object modeling center. To improve the efficiency of the
grasp simulation, continuous collision detection was used to
quickly find contact points between the object and the robotic
hand. If a new object is brought to the modeling center, after
a few hours of modeling and computation, it can be grasped
by the service robot.
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