Active Object Recognition under
Gaze Control

Jan-Olof Eklundh, Marten Bjorkman
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The KTH Head of 1991
ey

@ Independent eye and neck movements

@ Eye rotations around optical center

@ Eccentric neck

@ Drive towards symmetry constrained redundancy

@ Monocular stabilization and pursuit, binocular
stereopsis and accommodation independent but
Integrated

@ Binocular fixation at lateral speeds up to 115°/s,
5 m/s In depth. Saccades up to 360°/s
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QuickTime™ and a
H.261 decompressor
are needed to see this picture.
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QuickTime™ and a
H.261 decompressor
are needed to see this picture.
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What did this system “see™? { 5 4

® High performance through tightly
iIntegrated hardware. No resources left

® [nformation about ego-motion,
Independent object motion and depth
available, but couldn’t be utilized

@ Appearance of 3D objects too, as also to
some extent pose

@ Goal of current work to do that in visual
search and hand-eye coordination tasks
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A robot looking at a table at 1.5

Objects subtend only a fraction of the scene and
are not centered (unless attentional step)
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Desirable system structure

where “what”
attention segmentation
\ recognition /
what

Run concurrently. Motion powerful in bootstrapping,
but static objects often as important.
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Computational Vision and Active Perception

What the system “sees” {%&?
L,




F-g-s by integration of multiple cues 3;
from motion and appearance

QuickTime™ and a
YUV420 codec decompressor
are needed to see this picture.

Original Foreground mask
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The cues { /

Motion Texture
(contrast)
Colour Prediction

Combined
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F-g-s by integration of multiple cues 3;
from motion and appearance

QuickTime™ and a
YUV420 codec decompressor
are needed to see this picture.

Original Foreground mask
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A system for searching for

static objects

@ A wide field of view for attention
@ Recognition in foveated view

@ Steps:
® Divide scene into depth layers
® Select candidate objects through attention
® Fixate and track objects of potential interest

® Recognize/classify objects in foveal view, possibly
after a second binocularly based segmentation

@ Technically: two pairs of stereo cameras
® Problem: transfer of views
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-
2 Flow of information

5
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Stereo computations

AX
Ay

\

/

Relative orientations have to be known to
 relate disparities to depths
 simplify estimation of disparities

Using corner features and optical flow model

_[(1)a-yr, ) L 1 (1-xt
Xyo+r +Xr, Z |-yt

Unstable process => use robust methods
Firstassumer_andr to be zero
On-line calibration allows the use of expected retinal size
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Disparity map is sliced into layers.
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Computational Vision and Active Perception

BinoCues

BinoAttn

19



Local hue histograms correlated with that of
requested object.
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Saliency peaks

Peaks from blob detection of depth slices.
Based on Differences of Gaussians.

Hue saliency map used for weighting.
Random value added before selection.
nhibition on return
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Fixation

The foveal system continuously trles to fixate

« done using corner features o 0 C
« and affine essential matrix F=l0o0d
2 b e

Zero disparity filters won’t work
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Foveated segmentation Eong
%

To boost the ensuing recognition/classification

* Foveal segmentation based on disparities
 Rectification using affine fundamental matrix

* Only search for disparities around zero =>
Large number of false positives
* Points clustered in 3D using mean shift
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Computational Vision and Active Perception
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Small example object database In
real-time experiments - In total 24

Here models of SIFT features and hue
histograms. Texture descriptors also
iIncluded now.

c
@)
=
Q.
(¢D)
&)
S
(€D)
al
(€D)
=
)
()
<C
©
-
qv]
(-
O
D
=
q0]
-
O
=
q0]
e
=
o
&
@
@)

26




Visual scene search

QuickTime™ and a
YUV420 codec decompressor
are needed to see this picture.
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Segmentation robustness
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Computational Vision and Active Perception




Recognition experiments

@ 24 objects

® | earned over a range of views,
represented by two features

® Arranged In 24 “scenes”
@ “Is X In the scene?”
@ 3 fixations allowed
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False positive rate



True positive rate
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LEagys
ocC &

SIFT features, wide field vs wide + central field
disparity segmentation
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Wide field + central disparity based segmentation,
combined features
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Conclusions

® Gaze control essential. In fact, many
current methods assume foveation or
something with similar effects

@ 3D cues powerful for figure-ground
segmentation (informs about the scene)

® 3D cues thereby also support recognition
and categorization

® |[ntegration of multiple cues essential

36



-
O
=
ok
(D)
&)
—
(€D)
al
(€D)
=
)
(&)
<C
©
(-
qv]
(-
O
D
=
q0]
-
O
e
q0]
i’
-
o
&
@
@)

Comments. Future work { o 4

We have a running system, that normally finds objects
within three saccades

Experiments tedious (learning, scene setups)

More cues being added, especially texture

Focus on classification and eventually categorization
Applications to hand-eye coordination and manipulation

Potential for computing both local and global shape
properties
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