Gaze Control and Manipulation

Giulio Sandini Giorgio Metta Lorenzo Natale Francesco Orabona

LIRA-Lab, DIST University of Genova – Italy <u>http://www.liralab.it</u>

Workshop on *Bulding Humanoid Heads* Santa Monica, November 10, 2004

The LIRA-Lab Team

Development and Robotics

Study the **development** of sensorimotor coordination and cognitive abilities in humans by building artificial systems (humanoids) that "grow"

It is the **goal** (understand cognition) but it is also the **means** (building complex systems)

Summary of talk

Development of oculomotor control

Role of gaze in the control of manipulation (gaze control is more that just looking...)

Some new hardware

...heads...

4 d.o.f.

5 d.o.f.

8 d.o.f.

Babybot

With Babybot we are studying the development of sensorimotor coordination and cognition (building an "adult" human-like being may be impossible).

e.g.: Development of Eye-head Coordination

What is the sequence? Why is a certain sequence better? What moves the system from one stage to another? Are there stages?

Babies Learning

(visual tracking)

From: Von Hofsten, C. and K. Rosander, *Development of Smooth Pursuit Tracking in Young Infants.* Vision Research, 1997. **37**(13): p. 1799-1810.

Babybot's head

• 5 degrees of freedom

Visual Tracking Stereo vision Optical flow and image stabilization Visuo-acustic integration Visuo-inertial integration Learning and development

Babybot Eyes....

From Schultze (1866)

Conventional visual sensor

Human visual sensor (1-2 deg)

LIRA-Lab

From: Sandini, G., Tagliasco V.: An anthropomorphic Retina-like Sensor for Scene Analysis, Computer Graphics and Image Processing. 1980

Log-polar (Cortical) Images

Images acquired by a retinalike sensor are rectangular

Some Questions asked

- Log-polar geometry and Time-to-impact
- Log-polar geometry and vergence control
- Integration of visual and vestibular data
- Role of vergence on tuning of VOR gain
- Motor-motor coordination in learning visually guided reaching
- Role of VOR in early development of oculomotor control
- Registration of visual and acoustic maps

Binocular Fusion

Zero Disparity Filters

The fused part of the image in the log-polar plane is comparatively larger than in a constant resolution one

Dynamic Vergence

Radial Optic Flow as "fast loop" for vergence control

From: Capurro, C., F. Panerai, and G. Sandini, *Dynamic Vergence using Log-polar Images.* International Journal of Computer Vision, 1997. **24**(1): p. 79-94..

Busettini, C., G.S. Masson, and F.A. Miles, *Radial optic flow induces vergence eye movements at ultra-short latencies.* Nature,, 1997. **390**: p. 512--515

The artificial vestibular system

Video clip

How does VOR Gain adapts?

See: Finocchio, D.V., K.L. Preston, and A.F. Fuchs, *Infant Eye Movements: Quantification of the Vestibulo-Ocular Reflex and Visual-Vestibular Interactions.* Vision Research, 1991. **31**: p. 1717-1730.

See: Sandini, G., F. Panerai, and F.A. Miles, *The Role of Inertial and Visual Mechanisms in the Stabilization of Gaze in Natural and Artificial Systems*, in *Motion Vision, Computational, Neural, and Ecological Constraints*, J.M. Zanker and J. Zeil, Editors. 2000, Springer. p. 189-218.

Learning Sound Directed Gaze

Auditory Saccades Map

Saccades & VOR

Gaze and manipulation (Body Image)

Learn about your own body (Where is my hand?)

- Exploit self-generated actions
- Exploit correlated motion

Hand segmentation: clips

Hand localization (proprioception and color)

Tack Hand

Predict hand position and size

Visually Guided Reaching

It is possible to simplify the problem by reaching for the fixation point. This suggests that head-eye-hand coordination plays an important role in the organization of these movements and <u>leads to the</u> <u>hypothesis that a representation of</u> <u>current gaze direction may serve</u> <u>as a reference signal for arm motor</u> <u>control</u>.

From: Flanders, M., L. Daghestani, and A. Berthoz, *Reaching beyond reach.* Experimental Brain Research, 1999. **126**(1): p. 19-30.

Motor-motor coordination.

Coordination is obtained by mapping motor commands from the eye-head space into motor commands to the arm-hand.

F. Gandolfo, G. Sandini, E. Bizzi, "A Field-based Approach to Visuo-motor Coordination," Workshop on sensorimotor coordination: amphibians, models, and comparative studies, Sedona, USA, 1996.

n in

Metta, G., G. Sandini, and J. Konczak. *A Developmental Approach to Sensori-motor Coordination in Artificial Systems*. in *IEEE Conference on System, Man and Cybernetics*. 1998. San Diego (USA).

Video Clip

...a complex behavior...

A robot grasping behavior based on three phases

Object Acquisition

- Watching the hand holding the object
- Hypothesis: central blob ∈ object
- **Estimate:** $P(blob_i \in object | \text{fixating object & <math>\&$ hand)

- 1. Robot moves the hand over the object
- 2. Robot moves down the hand
- 3. Robot grasps the object
- 4. If object is grasped, drop it outside table
- 5. If object is not grasped go back to visual search

Two examples

Future directions...

RobotCub (see poster...)

- Humanoid: as much as possible
- Child size
- Reasonable weight
- Robust: it might "fall"
- Degrees of freedom: 55?

New Head

The end