Natural Human-Robot Interaction: Audio-Visual Perception of Humans and of their communication modalities

Rainer Stiefelhagen Interactive Systems Labs Universität Karlsruhe

stiefel@ira.uka.de

Overview

- Natural Human-Robot Interaction
 - Motivation
- Visual Perception of People
 - 3D Body Tracking (Head, Hands, ...)
 - Gesture Recognition
 - Tracking of Head Pose and Focus of Attention
- Acoustic Perception
 - Speech Recognition (State of the Art, Problems, ...)
 - Emotions, Person Identification, Topic Tracking, ...
- Multimodal Dialogue
- Conclusion and Outlook

Natural Human-Robot Interaction

People use a variety of cues during face-to-face interaction:

- Visual:
 - Gestures, Pointing Gestures
 - Gaze / Attention
 - Facial Expressions
 - Body Language
 - Identity
- Acoustic:
 - Speech / Language
 - Tone of Voice / Emotions
 - Topic

We need to perceive and understand the full context: Who, What, Where, Why, How, To Whom?

Our Scenario

Multimodal Interaction with a Household Robot

Visual:

- Face Detection and Tracking
- Body-Tracking
- Detection of Pointing Gestures
- Head Orientation & Focus of Attention
- Face Recognition

Acoustic:

- Speech Recognition
- Emotion Recognition
- Dialog-Processing
- Speaker Identification

German Research Foundation (DFG): Collaborative Research Center 588 "Humanoid Robots - Learning and Cooperating Multimodal Robots"

3D-Tracking of Head and Hands

- Combined use of skin-color and disparity features. Benefits:
 - 3D positions of head and hands
 - improved tracking due to a basic 3D-model of human body
- No markers, no manual initialization, no static background modeling
- 10 frames/sec on a 2.6GHz PC (for a single Person)

(Kai Nickel, R. Stiefelhagen, Humanoids 2003)

Locate Head-/Hand-Candidates

Pointing Gesture Recognition

- HMMs to detect pointing gestures
 - 3 Models: Begin Hold End
 - Features: (r, $\Delta \theta$, Δy)
 - Online-Decoding

- Estimating Pointing Direction
 - Estimated in Hold-Phase
 - A) Head-Hand-Line
 - B) Forearm-Direction

Pointing Gesture Recognition - Video

Gaze-Aware Human-Robot Interaction

Focus of Attention tracking:

- to understand the user's actions/intentions
- to establish joint/shared attention
- to determine the addressee of a speech act
- "Is the robot addressed or someone else?"

 Head orientation is a good cue for a persons direction of attention (and it is much easier to detect than eye-gaze!)

Speech-based cues do also help !

Appearance-Based Head Pose Tracking

Head Pose Estimation: Results

- Known users: ~ 4° mean error
- New Users: ~ 10° mean error
- Systems runs at ~ 10fps

disparity image \rightarrow 30% relative improvement under different illumination!

(Seemann, Nickel, Stiefelhagen `03/'04)

Audio-Visual Estimation of Addressee

- Scenario: Two humans, one household robot
- Goal: Identify Target:
 - When was the robot adressed?
- Audio-visual estimation of Addressee
 - Visual: Based on Head Pose Estimation
 - Speech-based:
 - Utterance lenght, occurrence of "Robot", syntactical and semantical differences, sentence structure and parseability features

(M. Katzenmaier et al., ICMI 2004)

Estimation	Precis.	Recall	F-Meas.	Accu.
Acoustic	0.19	0.91	0.31	0.49
Head Pose	0.57	0.81	0.67	0.90
Combined	0.65	0.81	0.72	0.92

People Identification: Challenges

Tracking the Identities of People

- Combined use of
 - Face recognition
 - Speaker identification
 - Tracking of people's appearance (color models)

Where ?: 3D Person-Tracking with external cameras

- 4 calibrated cameras used
- Adaptive foreground segmentation

probabilistic tracking (Kalman-Filter)
(Focken & Stiefelhagen 2002)

What was said and meant?

Large Vocabulary Speech Recognition

- Issues:
 - Sloppy Speech
 - Distant Microphones
 - Mismatch in Vocabulary
 - (Other Languages)
- Many Other Aspects: Topic Detection, Named Entity, Translation, Discourse,

Multimodal Dialog

- Fuse Speech, Pointing, Gesture, Handwriting
- Fusion Usually at Semantic Level

Audio-Visual Speech

Combine Speech and Visual Info

JANUS-Speech Recognition Toolkit (JRTk)

- Unlimited and Open Vocabulary
- Spontaneous and Conversational Human-Human Speech
- Speaker-Independent
- High Bandwidth, Telephone, Car, Broadcast
- Languages: English, German, Spanish, French, Italian, Swedish, Portuguese, Korean, Japanese, Serbo-Croatian, Chinese, Shanghai, Arabic, Turkish, Russian, Tamil, Czech
- Best Performance on Public Benchmarks
 - DoD, (English) DARPA Hub-5 Test '96, '97 (SWB-Task)
 - Verbmobil (German) Benchmark '95-'00 (Travel-Task)

Non-Verbal Cues in Speech

Transcript: Onune baksana be adam!

Turkish Bus Station Angry Negotiation Umut Chemicals Istanbul Language ID Acoustic Scene Emotion ID Discourse Analysis Speaker ID Topic ID Entity Tracking

Handsfree, Always-On

- No Headset
 - Can't Control the Microphone
 - Can't Control the Recording Condition
 - Cross-Talk, Multiple Speaker
 - Noise
- No Push-to-Talk Button
 - Don't know when to start and stop; always on !
 - Don't know who is meant
 - Knowledge of the State of the World Becomes Important
 - Don't Know the Topic and Goal of Speech
 - Input and Commands always Change

Speech Recognition – Distant Speech

Adapting the acoustic model using MLLR to different speaking distances (but not to the speaker!)

Effect of unsupervised adaptation

WER	close	lapel	1.2m	1.5m	1.8m	2.4m
Unadapted	26.6%	29.7%	47.7%	51.9%	66.1%	69.3%
Adapted	26.5%	28.4%	42.5%	44.7%	59.7%	60.1%

• Sensibility of already adapted system

WER	1.2m	1.5m	1.8m
Adapted on 1.5m	42.4%	44.7%	60.1%

Human-Robot Dialog Processing

Integration & Fusion of several modalities is necessary: **Speech, Gestures, Focus of Attention, Emotions**

Gieselmann, Fügen, Holzapfel, Schaaf, Waibel. Humanoids 2003.

Fusing Speech and Pointing Gestures

Multimodal Fusion

Conclusions

- Interface on a Humanoid Robot Should
 - Operate Naturally around Humans
 - React to Explicit and Implicit Input
- The full context must be perceived and interpreted:
 - Who, What, Where, Why, How?
 - Necessary technologies include: Person/Body Tracking, Identification, Head Pose / Attention, Gesture Recognition, Speech, Emotions, Language Understanding, Dialogue, ...
- These technologies must improve with respect to
 - Robustness (noise, lighting conditions etc.)
 - Naturalness

Outlook

Long-term goal:

- Real-time perception and understanding of scene and user
- Natural Human-Robot Interaction and Cooperation

Short / Mid-Term:

- More detailed body-tracking without any markers
- Improved tracking of user's focus of attention
 - Head / Body Orientation
 - Gestures
 - Dynamic Scenes
- Robust Person Recognition (Face, Speech, Tracking)
- Object Recognition
- Attentional Mechanism / Orienting Behavior of Robot

Acknowledgements

• Thank you for your attention !

• The team:

- K. Nickel: Person Tracking, Pointing Gestures
- H. Ekenel: Face Recognition
- C. Fügen: Speech Recognition & Dialogue
- P. Gieselmann: Dialogue Modelling
- H. Holzapfel: Dialogues & Fusion
- E. Seemann, M. Katzenmaier, D. Harres, D. Kern (Students, Vision)
- Alex Waibel (Director of the ISL)

Contact:

- stiefel@ira.uka.de, http//isl.ira.uka.de/~stiefel
- This work is partly funded by the DFG under Sonderforschungsbereich 588 "Humanoide Roboter"