Predictive Learning in Neurons and Robots
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A cognitive (?) network

limbic loop

GLU

(P)FC Nacc
GLU ~ M
@ GABA GABA

DA
A o
ABA ,

GABA

HC

DA

lateral
hypotha




Our Goal: Network Control and Learning
during Fast Walking




Three Steps

Neuronal Plasticity Hebb
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Reflex based Control Networks
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(+ "world”)
Environment
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A simple © adaptive anticipatory Network



The first component: An adaptable neuron
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The finding: Spike-timing-dependent
plasticity (STDP) can be used for
Sequence Learning
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Weight Change Curves
Source of Depolarization: Back-Propagating Spikes

Back-propagating Weight change curve
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The same learn

Correlations
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Local Learning Rules

Ing rule:

Hebbian learning for distal synapses
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The second component: A reflex as the
basic control structure.

Closed loop

— e e ——
CEm




Application: Classical
Conditioning In a Robot

“Temporal Sequence
Learning”



Natural Temporal Sequences In life and
In “control” situations

Real Life
Heat radiation predicts pain when touching a hot surface.

Sound of a prey may precede its smell will precede its
taste.

Control
Force precedes position change.

Electrical (disturbance) pulse may precede change in a
controlled plant.

Psychological Experiment

Pavlovian and/or Operant Conditioning: Bell precedes
Food.



Same STDP as
before only now d

with two inputs - t U. (1 {
@ =n ()Y()
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Late: “Food”



Robot Application

Early: “Vision” (O

Late: “Bump” ()
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How to assure behavioral stability ?
(Avoiding the “tabula rasa” problem)

A very basic animal (Reflexes only)
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This structure assures initial behavioral stability (“homeostasis”)
as well as stability during the learning (“fall-back behavior”).

Porr & Woergoetter, Neural Comp. 2003, 2006 (in press)



Robot Application

Learning Goal:

Correlate the vision signals
Visiongeiisdla€/spuch signals and
Navigate witheutecollisionsi)

Connections

VS Left VS Right

Collision Sensors (CS)

Initially built-in behavior: gteering Neuron
Retraction reaction whenever an
obstacle is touched. fixed (unconditioned

Connections CS Back Speed Neuron




Learning to Retract:
A Vision Signal Predicts a Bump




What has happened during learning
to the system ?

The primary reflex re-action has effectively been eliminated
and replaced by an anticipatory action
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Mapping Theory to the Limbic System
An early cognitive (?), anticipatory (!) pathway
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The third component

Environment



Applying this in a walking robot: The Neuronal Circuitry
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AL, (AR) Stretch receptor for anterior angle of left (right) hip; GL, (GR) Sensor neuron for ground contact of left

(right) foot; EI (FI) Extensor (Flexor) reflex inter-neuron, EM (FM) Extensor (Flexor) reflex motor-neuron; ES
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Motor Neuron Signal Structure
(spike rate)

Learning reverses
pulse sequence
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Stability of STDP




The actual Experiment

Walking Robot Movie here
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Geng et al. Neural Comp. 2006 (in press) and Geng et al. Int. J. Rob. Res. 2006 (in press)



The Approach: §
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Parameterization of STPD to make §
It usable in ANN architectures
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Closed loop reflex based single
neuron learners

Adaptive networks for anticipatory
control.

Anticipation as an early cognitive feature !



Acknowledgements

~ T. Geng (Walking Robot) TR e e
- B. Porr (Theory of Learning) | N P e e

_--,A'.'_Saudargi_jenei (LocaISTDP) gk S e A e e |

- . L - # T, a i - AT " .




ADVERT

Job offer for Postdocs and Phd students at the:

Bernstein Center for Computational Neuroscience (BCCN)
University of Gottingen, Germany

In the fields of
Learning, Robotics and Computer Vision,

funded through two European Projects.

by Feb 2006.

See http://www.cn.stir.ac.uk for our work and/or contact me at
worgott@chaos.gwdg.de




