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I. INTRODUCTION

One of the main challenges in the field of robotics is
to make robots ubiquitous. To intelligently interact with the
world, one of the key abilities that robots need to have is
to manipulate objects. Typical environments in which robots
will be deployed, such as a house or an office, are dynamic
and it is very difficult to equip robots with an ultimate and
general grasp planning capability. Planning a grasp is difficult
due to the large search space resulting from all possible
hand configurations, grasp types and object properties that
occur in regular environments. Another important question
is how to equip robots with capabilities of gathering and
interpreting the necessary information for novel tasks through
interaction with the environment in combination with minimal
prior knowledge.

In relation to grasping, some recent approaches propose the
use of prehensile postures where object features and experi-
ence is used to aid the selection of the pre-grasp posture and
grasp controller(s). Such an approach significantly decreases
the size of the search space. This paper presents a method
for grasp generation for robotic hands where programming by
demonstration, experience and shape primitives are used to
provide a successful grasp. In other words, we integrate a top-
down (experience) and a bottom-up methodology to develop a
more natural grasp learning system. It is important to note
that the bottom-up methodology can be seen as modeling
of corrective movements. The proposed method is shown to
work for choosing the grasp approach vector, but can also
be used to choose other grasp control parameters, such as
the fingers’ relative closing speed, actions from tactile sensor
inputs et cetera. The method is used in a Programming by
Demonstration setting. The system recognizes the object and
grasp type which are mapped to a suitable controller that
can reach a successful grasp. In this work, the entire grasp
sequence is thoroughly evaluated in a simulated environment,
from learning a grasp to actually reaching it. We also discuss
the necessary requirements for evaluating this approach in a
real setting.

II. SYSTEM OVERVIEW

In this section, we shortly present the building blocks of the
currents system. More details about each of the steps will be
given upon acceptance.

1) Object Recognition and Pose Estimation

The system can identify which object and where it is
[1], [2].

2) Grasp Recognition
A glove with magnetic trackers provides hand postures
to the grasp recognition system [3].

3) Grasp Mapping
An off-line learned grasp mapping procedure translates
the human grasps into robot grasps, Section III.

4) Grasp Planning
The robot selects a grasp controller. The grasp will
be approached from the direction that maximizes the
probability of reaching a successful grasp, Section IV.

5) Grasp Execution
A combination of velocity, position, and tactile force
control is used to design of a semi autonomous grasp
controller to reach the final grasp, Section V.

III. GRASP MAPPING

It has been argued that grasp preshapes can be used to
limit the large number of possible robot hand configurations.
This is motivated by that when planning a grasp, humans
unconsciously simplify this choice by selecting from only a
few prehensile postures appropriate for the object and task [4]–
[6]. Based on the above and previous work [3], the current
grasp recognition system can recognize ten different grasp
types. These grasp are mapped to appropriate robot grasps.
The robot grasp types do not refer only to hand postures, but to
grasping controllers. Fig. 1 illustrates the initial hand postures
for each of the controllers.

IV. GRASP PLANNING

The planning is performed for different objects and two
robot hands in the grasping simulator GraspIt! [8]. All results
are stored in a grasp experience database. The work described
in [8] and [9] concentrate on finding optimal fingertip posi-
tions, but leave out the problem of actually obtaining those
positions. In our approach, the grasp controllers presented in
Section V are then used to improve the final grasping. We
extensively evaluate this approach in simulation to motivate
its feasibility and future implementation on a real robot. It
is important to note here that the planning is performed not
only for each object and end-effector, but also for each grasp
type. To decrease the search space, only a subset of grasp
controller parameters are considered. For power grasps, three
parameters (θ, φ, ψ) are varied describing the approach



Fig. 1. Initial robot hand postures for different grasp types.

direction and hand rotation. For precision grasps, a fourth
parameter d, that describes the retract distance when contact
is detected, is added. In our experiments the search space size
was (θ=8, φ=16, ψ=8, d=6) which required about an hour for
training (6144 grasps in total).

A. Training on Object Primitives

A model of each object is necessary for training the grasp
planner. It is not likely that the robot will be able to acquire
very detailed models of objects that is supposed to manipulate,
especially if the shape is very complex. However, it is realistic
to assume that it will be possible to extract certain features,
that are based both on the object’s appearance and shape.
In our system, the appearance is used for recognition and
shape for grasp planning. Currently, it is assumed that a
vision system can either generate a generic shape of the object
(truncated cone, sphere, box, cylinder) or that this information
is generated in advance through a training process.

V. GRASP CONTROL

To enable more intuitive formulation, a control design is
used that allows the controller to be specified in a direct and
intuitive way [7]. In this example a Barrett hand is used. Each
finger can be closed and the spread, the angle between the two
fingers on the one side, can be controlled by setting the joint
torque.

The basis for the controller is a linear transform T relating
the original joint angles q to new control variables x, see
Fig. 2. The transform is

x = Tq. (1)

It is approximated that joint angle corresponds to finger
position. The closing force is controlled using tactile force
sensor data while joint encoder data is used to control the
finger positions. Spread is not used for control here. Before
contact, fingers are velocity controlled individually.

Fig. 2. Grasp controllers: total grasp force, stability, centering, and spread.

The four controllers from Fig. 2 gives the transform q
(neglecting any scaling factors):

T =
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. (2)

The control forces f are computed using a P-controller
f = De where D contains controller gains and e is an error
vector with force and position errors. (Joint friction is simu-
lated.) The joint torques F are computed as

F = T Tf = T TDe. (3)

Fig. 3 shows an example grasp execution. However, given
a certain controller, how can we be sure that it succeeds in
reaching the final grasp in its semi-autonomous manner? In
addition to controller parameters, the factors that affect the
result are primarily object position with respect to the hand
when the grasp is initiated and the object properties. Using the
approach presented in the previous chapter, the boundaries for
this space can be investigated, and the necessary requirements
on object localization thus established.

Fig. 3. Execution of a sample task using the controller described in Section V.

VI. CONCLUSION

The results of the experimental evaluation performed in a
simulated environment suggest that the outlined approach and
tools can be of great use in robotic grasping, from learning by
demonstration to precise and robust object manipulation.

The grasp experience database contains not only a record
of success rates for different grasp controllers but also the
object-hand relations during an experiment. In this way, we
can specify under what conditions the learned grasp strategy
can be reproduced in new trials.
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