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ARMAR-IIl in a Kitchen Environment
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Limitations and shortcuts

* Objects
— Complete model knowledge (shape, color, texture)
— Only visual representation is used

— How to learn new objects?
— How to acquire multi-sensory representations of objects?

e Actions

— “engineering” approaches as place holders for learned primitive
actions.

— How to learn new actions?
— How to adapt actions to new situations?
— How to chain different actions to achieve complex tasks?
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Underlying Control Architecture

High Level
* Reasoning
* Planning
* Language

Mid Level
* Recognition
* Memory
Consolidation
* Action
Selection

Low Level
* Online
Sensorimotor
Processing
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In this talk

 Autonomous Exploration:
— Visually-guided haptic exploration
— Visual object exploration and search

* Coaching and Imitation
— Learning from Observation

— Goal-directed Imitation
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Hand: available skills

Direct Kinematics
Inverse Kinematics
Position/force control

Detection of contact and “objectness”
Assessment of object deformability

M, M,
E ~
1 ) M,
Precision grasps: Power grasps:
Distance between Distance between
fingertips fingertips and palm
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Multisensorial object exploration

* Fusion of tactile, proprioceptive and visual sensor data with a
five-fingered hand

Invéstigating
Verification of object size Verification of object deformability
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Tactile Object Exploration

* Potential field approach to guide
the robot hand along the object
surface

e Oriented 3D point cloud from
contact data

e Extract faces from 3D point cloud

— Geometric feature filter pipeline
* Parallelism
* Minimum face size
e Mutual visibility
* Face distance

— Association between objects and

actions (grasps) = Symbolic N
grasps (grasp affordances) 2 ‘

o 501 2000 2500 3000
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Active Visual Object Exploration and Search

Exploration

Representation

Visual Search

* Generation of visual representations through

exploration

* Application of generated representations in

recognition tasks.
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Active Visual Object Exploration

Exploration of unknown object

Camera Images

Hand Localization

Fusion

Background

Modelling
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Exploration

* Exploration of unknown object

— Background-object and hand-object segmentation
— Generation of different views through manipulation

Segmentation of Objects
in the Hand of ARMARK-III

Institute for Anthropomatics
K. Welke, J. Issac, D. Schiebener, T. Asfour, R. Dillmann
2009
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Representation

e Aspect Graph
— Multi-view appearance-based
representation
— Each node corresponds to one view
— Edges describe neighbor relations

* Feature Pool
— Compact representation of views with
prototypes
— Grouping based on visual similarity
— Vector quantization through
incremental clustering
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Active Visual Search

e Active Search eScene memory
Object search using perspective Integration of object hypotheses in an
and foveal camera of Karlsruhe ego-centric representation
Humanoid Head
PREOIEE AT

Active Visual Search
on a Humanoid Head

Institute for Anthropomatics
K. Welke, T. Asfour, R. Dillmann
2009
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Learning by Autonomous Exploration: Pushing

e Learning of actions on objects (Pushing)

* Learning relationship between point and angle of push
and the actual movement of an object

Y
Yworld

Xworld

e Use the knowledge in order to find the appropriate point
and angle of push in order to bring an object to a goal
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Pushing within the Formalized OAC concept

Requirements:

— Initial motor knowledge: the robot need to know how to move the
“pusher” along straight lines

— Assumed visual processing: segment and localize objects

The pushing OAC oacPush learns the prediction function
updateT, which is implemented as a feedforward neural
network.

This network represents a

D =0;

forward model for object while frue do

repeat
movements_ that have be-en a = SelectRandomMotion; bin(o); loc{o);
recorded with each pushing expr = exacuta(push);

' if d{loc(o), loc(o)') = ¢ then
action. D—DU {expr}:
e Learning by exploration ;ipdﬂtﬂﬁliﬂxpr};
CIh
until enouwgh date collected
paco|plus updateT(D};

end



Pushing for grasping

* Object independent pushing
(generalization across objects).

* Learning relationship between
point and angle of push and the
actual movement of an object

* Direct association between the
binarized object image and the
response of the object with
respect to the applied pushing
action.

 Use the knowledge in order to
find the appropriate point and
angle of push in order to bring
an object to a goal

e Pushing for grasping
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In this talk

 Autonomous Exploration:
— Visually-guided haptic exploration
— Visual object exploration and search

* Coaching and Imitation
— Learning from Observation

— Goal-directed Imitation
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Observation, Reproduction, Generalization

Observation

Observation

= Lo

Generalization

Reproduction

Reproduction
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Representation
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Build a library of motor primitives

Coaching

Markerless human motion
tracking and object tracking

Guiding
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Build a library of motor primitives

 Master Motor Map (MMM) as
an interface for the transfer of
motor knowledge between
different embodiments

—Cogsys [
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Action representation using DMPs

canonical system: 7Tu=—-au

i Yi(u) wiu —hi(u — ¢;)?
nonlinear function: f(u) = — (w)y=¢e V7
transformation system: 710=K(g—x)—Dv+ (9 —x0)f
TL =0

Locally weighted learning
Gaussian process regression

w; L0, 9, T

canonical Uu | nonlin.ear Jf(u)t transformation Y, Y, Y
system function system
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Learning from multiple examples

* To relate actions to goals, we need to observe more
than one movement

— Example movements M, encoded by a sequence of
trajectory points {p;, v;, a;} at times {t;},j = 1, ..., n,.
— Associated goals (query points) q..
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p p h;nﬁggﬁgﬁ%}i -



Parameters to be estimated

* To generate a new control policy, we need to estimate the
DMP parameters w, g, and t as a function of parameters g that

characterize the task
F:q—

e Gaussian process regression to associate the query points
with the goal of an action, frequency and timing.
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Parameters to be estimated

* To generate a new control policy, we need to estimate the
DMP parameters w, g, and t as a function of parameters q
that characterize the task

F:g—>| ¢

* Locally weighted regression to estimate the shape parameters
at new situations.
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Reaching and active vision

'! e 3-D active vision:
errors corrected by
GPR.

{ * No knowledge about
the kinematics
assumed; kinematics
of the goal
configuration learned
from the data.

"« Generated DMPs
avoid the table.
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Perceptual feedback

The properties of DMPs allow us to easily modify the final
reaching position on-line.
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Accuracy for reaching and grasping
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* Difference between the means: [1.6, 4.2, 7.6] cm.

» Systematic modeling errors are successfully corrected.
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Grasping

: .,1.

It was not
necessary to track
the hand to correct
modeling errors
(vision +
kinematics).
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Coaching periodic motion

i
E =

* The first system
that does not
need the
frequency to be
specified
beforehand.

* The system

allows training
with the teacher
in the control
loop.
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Periodic movements

* Extract the frequency and learn the waveform.
* Adaptive Frequency Oscillators for frequency extraction.

* |ncremental
regression for
waveform

learning — -
Dynamic => *&[
Movement L
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Generalization of Periodic Movements

* The data needs to be first processed to obtain the
optimal frequency for each example motion.

* To match the phases between the training
trajectories, each example trajectory must end in the
same configuration.

 When using recursive learning with a forgetting
factor, we need to ensure that we parse all examples
with the matching phases.
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Periodic movements: Wiping
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Training
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Training Data

5 10
example

The frequencies need to be estimated when acquiring the data.
Height difference is used as a query parameter.
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Generalization Performance
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Changing the Height of the Drums
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Sequencing of discrete DMPs

* On-line learning of
DMPs for
— Reach
— Transport
— Retreat

* Associating semantic
information with
DMPs

— sequencing of
movement
primitives

- planning
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Thank you ...

e This work has been conducted
within the EU Cognitive Systems
project PACO-PLUS
www.paco-plus.org
funded by the European

Commission paco °

WWW.cognitivesystems.eu pl us

perception, action and cognition. |

e Strong collaboration with

— the German Humanoid Research project
SFB588 funded by the German Research
Foundation (DFG)
www.sfb588.uni-karlsruhe.de

— the EU Cognitive Systems project GRASP
funded by the European Commission
WWW.grasp-project.eu
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