Grounded Humanoid Representations objects, actions and movements Gordon Cheng@TUM with contributions from: Michael Beetz (TUM), Marcia Riley (TUM), Federico Ruiz (TUM) and Ales Ude (IJS)

Humanoid Robots

Motivation

- We learn about our world with such ease
- **Through exploration with our body upon actions on the** real-world
- What does it mean for humanoid robots?
	- **Having a body**
	- **Being able to interact with the world**

Grounding movements/ actions

- **Through observation then reproduction**
- Refinements need to be accounted for \mathbf{u}
	- **FRANGILE** Through Exploratory
	- ***** Through Instruction

Action Language For Robot **Control** Federico Ruiz-Ugalde (TUM), Michael Beetz (TUM), Gordon Cheng, TUM

Action Language For Robot **Control** There is a Strong connection between language and action.

. "Push Ice Tea while maintaining orientation"

"Topple Ice Tea"

***** "Touch Ice Tea, don't move it"

Action Language For Robot **Control**

- We can use an action language to translate high level instructions to object control.
- Object control can translate object manipulation commands to motor commands
- Motor control can translate motor commands to move limbs, and exert forces on objects.
- Control is centered on the object (affordance) given the robot's capabilities (grounded).

Action Language

Example: "Push ice tea strongly while maintaining orientation"

System Together

Reasoning and Planning

Given a desired goal, it generates a plan which contains sentences using an action language.

Action Language

Imperative.

- "Open door", "Pour water into the mug"
- **Subject is always the robot or the limb.**

• Predicate (verb, adverb, direct object, rest of predicate) will determine the object model, parameters, commands and constraints. (Association map)

Finding An Association Map.

- **Prior knowledge (web, other robots)**
- **Teaching** (by action observation and execution)
- P(object, verb, adverb| model, params, command)
- **EXEC** Learn a complete enough association map to give our robot good manipulation capabilities.

Object Model System

If we see this pictures what comes to our mind?

***** Prediction.

Object Control

"Open the door"

- Given the condition that the door is initially closed.
- **. We know (from prediction) what is going to happen** when we rotate the handle.
- **What do I have to do to open the door? Inverse** problem.

Object Control

- **The inverse problem is easy when the door is closed.** We can only open the door by rotating the handle and pulling from it.
- **But if the door is already a bit open and we want to** open the door fully, then we can pull the door not only from the handle but also from the door itself from infinite points in the door.
- Optimize. (Put more constraints to the problem)
	- Use less energy, faster, and so on until we find a unique solution.

Object Control.

- Control is centered on the object (affordances) given the robot's capabilities (grounded)
- We use a multiple paired forward (predictor) and inverse (controller) model system to control the objects.

Models And Parameters

• Mechanics "Classical Mechanics" (rigid body, force balance, kinematics, dynamics, fluids)

*** Machine Learning.**

Exploration and Learning

- **The robot can learn the parameters and also the** forward and inverse model of the objects, letting the robot play with the objects.
- **Exploration can be guided to minimize time or effort to** find the parameters.

Videos of friction and playing

^{r di} bosco da infi^g

FRUTTI DI BOSCO

Motor Control

- ***** Translates internal object space variables to external motor control signals. (e.g. inverse-forward kinematics and dynamics)
	- Measured torques in the arm joints are translated to estimated forces in the end-effector.
- Models the robot limbs. (arm, hands, legs, head)
	- **Kinematic chains, weights, inertial-tensors, joint friction, actuator model**.
- **If translates the internal object model system signals** into motor commands.

Perception

- **If provides the object** model system with more object state information.
- **If does this by** translating between camera signals to the internal object space representation.

An Example: Sliding A Box.

Weight **External** Friction WALDBEEREN

- It will slide if F_{ext} \leq F_f , it will not move if F_{ext} \leq F_f
- Constant: μ*s*, which is specific to object instance.

Nodel of a box.

Friction: *Ff ≤* μ*sFw*

Toppling An Ice Tea Box

The predictor must answer:

- **Where can the box rotate? Around A or B?**
	- **Model: Iterative algorithm (torques on base vertices)**
	- **Relevant parameter: Base Shape**
- Will it rotate? How strong?
	- **Model: Forces balance.**
	- **Relevant parameter: Center of mass.**

Grounding humanoid bodily motion

Marcia Riley, TUM Ales Ude, Jozef Stefan Institute Gordon Cheng, TUM

Coaching Introduction

- **Human motor skill learning models & human coaching**
- **Adapt appropriate formalisms to humanoid robot** coaching
- **Experiment is shown**

Humanoid Robot Coaching Motivation

Coaching paradigm: robot acquires motor skills with the aid of a human coach Modelled on human-skill transfer between a coach and student

Motivation: reduce time and ease of creating robot behaviors

Efficient

Proven merits in accelerating human learning Does this efficient learning have applications in humanoid domain Constrains the solution space for the behavior Provides critical evaluation and guidance to reach a correct solution faster than can realized alone

Intuitive

Uses a familiar human paradigm for skill transfer Not necessary for person to learn a new skill set to coach a robot (they have experience from their own lives)

Gentile model (1972, 1987, 2000) Human Learning Models

- 2-stage model with respect to **Goals**
	- **Initial:** acquire movement patterns
	- **Later:** capability to adapt patterns to specific situations increase consistency & economy of effort

Human Learning Models Fitts & Posner learning model (1967)

- Cognitive (verbal) phase of learning \blacksquare
	- beginner
	- patterns of coordination in new task acquisition \blacksquare
	- rapid improvement ×
- Associative phase \blacksquare
	- subtle adjustments, gradual improvement \blacksquare
	- development of internal reference of correctness \bullet
- Autonomous stages É.
	- expert who is ready to cope with strategies \blacksquare
	- performance is automatic, minimal improvement (months or years) ×

Human Learning Models

- Strategies are applicable to the autonomous phase of learning thinking is that we need \blacksquare superior skill to assess strengths & weaknesses
	- ourselves \blacksquare
	- our opponents \blacksquare
- Performers in autonomous phase are experts: \blacksquare
	- less need of conscious task attention \bullet
	- better problem solving, adaptability
	- attends to relevant features quickly ×
	- makes decision with less information recognizes patterns sooner ×
	- better use of visual information as action predictors ×
- Experts require 10 years of intense practice (Ericsson, Krampe, Tesch-Romer 1993) \blacksquare
- Requires deliberate intense practice including instruction \blacksquare

Human Learning Models

Example: expert attending to relevant features quickly (Savelsberg et al. 2002)

Expert soccer goalkeepers

- more accurate in predicting direction of penalty kick
- took more time before initiating a movement
- made fewer corrective movement

Novices: looked longer at trunk, arms, hips

Experts: attended more to kicking leg, non-kicking leg, ball areas,

especially as impact approached

(University of Sydney, School of Exercise and Sport Science)

Information Feedback

Intrinsic

 - kinesthetic information from performing - relevant cues when performing (lines on a tennis court)

Artificial

 - augmented feedback: giving additional information during or immediately after performance (Rushall, 1972, sports education)

> **Terminal feedback or KR** (knowledge of results) - from a completed action (making a jump shot)

> > ş

Coaching is artificial concurrent IF. Useful if leads to learning of intrinsic cues for success. (Can you perform successfully when the coach is not around?)

> (University of Sydney, School of Exercise and Sport Science, Kelso, *Human Motor Behavior*, 1982)

Model for Humanoid Coaching

Fitts & Posner learning model (1967)

Cognitive (verbal) phase of learning

- beginner
- patterns of coordination in new
- rapid improvement

Associative phase

- subtle adjustments, gradual improvement
- development of internal reference of correctness

Autonomous stages

- expert who is ready to cope with strategies

(University of Sydney, School of Exercise and Sport Science, Dave Thompson)

Humanoid

Robot

Coaching

Mode

Coaching in Human Skill Transfer

A coach is an expert who improves student performance. How does the coach communicate relevant information to the student? Type and timing of information are key.

Type: demonstration and verbal commands (most common methods)

Much more effective when used together

- - In showing videos of complex movements, performance actually decreases if no
- verbal information accompanies video (Schmidt & Lee, 1999)
- **Explanation**: too much simultaneous information is presented to make
- correct correspondence between actions and goals

Relevant information is hidden among irrelevant information

- best performances occurred when specific feedback was given

(Why is perception alone not sufficient for learning complex tasks?)

Types of Information in Coaching

Demonstration includes:

 - performing correct movement (mirror neurons) - physically guiding student through movement provides kinesthetic information from performing (intrinsic feedback)

Common Verbal Commands: kinematic descriptions of motion

Coaches are especially good at identifying and correcting kinematic errors

 "bend your knees when you land"

Patterns of coordination Position **Velocity Acceleration**

Types of Information in Human Coaching

Evidence that people use kinematic planning:

- Kinematic trajectory planning in the **parietal cortex** (Kalaska, 1991)
- **Inverse dynamics models found in the cerebellum** (Schweighofer et al.,1998)
- Motor equivalence (Kelso, 1982; Bernstein, 1967)

Formalisms used in Humanoid Robot Coaching

Summary of Formalisms useful in the robot domain:

Transmit Information by:

 Demonstration Verbal communication Performance, guiding entity resolutions in the Performance, guiding the state statement of the Reformance of P **Useful coaching formalism applicable to humanoid robot domain:**

- New motor knowledge (patterns of coordination) \blacksquare
- Focus attention on relevant task features for learning of critical task aspects ×
- Assign priorities among goals \blacksquare
- Gives specific feedback to improve performance \blacksquare
- Iteratively define characteristics of success \blacksquare

Timing of commands is important, as is the tight coupling of performance, evaluation and instruction.

Humanoid Robot Coaching

Adaptations to humanoid robot coaching system:

New motor knowledge by demonstration: *imitation* and physical **Vocabulary** for coaching instructions: **Kinematic commands used for motor skills Transformation functions** containing domain-specific knowledge to effect specific changes to a motor skill Ability to **focus attention** on specific parts of a behavioral for refinement: body and time segmentation

A student-initiated **dialogue** to resolve ambiguities

Constraint: real-time interactive system that preserves tight coupling found in human coaching among effort, evaluation and guidance

Real-time full-body Imitation

Imitation as

 efficient way to acquire and modify skills retaining human characteristics of behavior

Provide interaction in a natural context

Strictly low-level imitation: the only goal is to match the movement of the coach or teacher as closely as possible

Use this to bootstrap new behaviors in real time in our coaching system

Demonstration: Approach to Imitation

Real-time Full Body Imitation

Reproduce

Desired joint angle position velocity acceleration

Interpret

Real time Inverse Model of Human **Kinematics Kinematics**

39

Observe

LEFT

⊺right

Humanoid Robot Coaching System

- **New motor knowledge** by **demonstration**: *imitation* and **physical** *guiding*
- **EXEL Full-body real-time imitation method to bootstraply** behaviors.
- **Guide the robot through a motion by lowering gains** and capturing joint angles

Related Work

- Nakatani, Suzuki & Hashimoto, "Subjective-evaluation oriented teaching \blacksquare scheme for a biped humanoid robot", Conf. HR, 2003.
- Nicolescu & Mataric, "Natural methods for robot task learning: Instructive demonstrations, generalization and practice.", Conf. on AAMA 2003.
- **EXT** Takagi, "Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation", Proc. of IEEE, vol.89, no.9, 2001.
- Kuroki et al., "Motion creating system for a small biped entertainment **B** robot", IROS 2003
- Interactive Evolutionary Computation (IEC) is a technique that evolutionary \blacksquare computation consisting of genetic algorithms (GA), evolutionary strategy (ES), evolutionary programming (EP), and genetic programming (GP) optimizes the target system based human subjective evaluation.

Classic Interface

2D Body 3D Humanoid Part Model Model

Humanoid Robot Coaching System

Example 10 vocabulary for coaching instructions:

- **EXELECTE VERBAL INSTRUCTIONS COACHES COMMONLY USE.** These commands center around **kinematic** descriptions of motion, such as higher, bend, and bigger used often in teaching motor skills.
- **These domain-specific commands comprise the** system primitives
- **Vocabulary also used to describe body**

Humanoid Robot Coaching /stem

- Ability to focus attention in body and time
	- **Dody space: concentrate and refine one part of the** movement (arms, leave the legs for later)
	- ***** time: segment the movements into sequences of smaller movements (split, join ends, join concurrent)

Humanoid Robot Coaching System

- **The Transformation functions containing domain-specific** knowledge to effect specific changes to a motor skill
- **A TF** is comprised of a label, the coaching command that invokes it, and a set of criteria that defines the high level command in terms of low level behavioral criteria. Label and criteria comprise a function that ultimately effects changes to the appropriate behavioral parameters

Using knowledge to find solutions

- Need knowledge relevant to behavior domain to establish criteria for transformation functions.
- We seek a minimal knowledge representation that affords the robot the same type of understanding of its body and the world as an infant has.
	- body, connectivity (reaching, torso may help extend the arm) E
	- world (external objects exist, my body is somewhere in world)
- **In addition, we have domain level knowledge of common motion** descriptors like *higher, bigger, faster.*

Knowledge

Knowledge

World Knowledge

Cartesian World space

Using knowledge to find solutions

- We can exploit this knowledge to enable the robot to find its own solutions in response to commands.
- Robot determines which DOFs would help with a *higher* command.
	- candidate DOFs are determined \blacksquare
	- **EXE** each is tested with a virtual move using forward kinematics always starting from the current position
	- the change in position is compared to the criteria for the *TF* \mathbf{C}
	- if it matches, robot suggests using this DOF
	- may make other suggestions knowing its connectivity

Humanoid Robot Coaching Interface

Coaching commands sent via UDP to: localhost

Direct Descriptors

Meta Commands

Time Segmentation **Commands** Acquisition **Commands** Object Interaction **Commands**

Performance **Commands** wrt Body **Segmentation**

Low Level System Implementation

Acquiring a throwing movement

Add a gripper

Seeding the throwing movement from demonstration

Experimental Parameters

Acquires new motor knowledge about task from coach's demonstration Coach gives specific feedback to improve performance

.3

3 points for world pos and orientation mapping

pchest_fe pchest_aa pchest_r

。 -
- - - -

Seeding the throwing movement from demonstration

Coaching: An Approach to Efficiently and Intuitively Create Humanoid Robot Behaviors

Transformation Functions

Original and modified trajectories for two iterations of the *smoother* transformation implemented with a moving average filter.

Original and modified trajectories showing modification by the *higher* transformation function after using *smoother*.

Comments

Coaching paradigm: robot acquires motor skills with the aid of a human coach \blacksquare

Modeled on human-skill transfer between a coach and student

Reduce time and ease of creating robot behaviors by constraining the solution space for a given behavior.

Coaching does this by providing critical evaluation and guidance to reach a correct solution faster than can realized with no guidance.

Coaching affords: High level control of complex robots Eliminates need to program each behavior Affords flexibility in changing goals or focus of attention during a behavior Enables non-specialists to participate more fully in creating robot behaviors

Comments

- **EXECOACHING COOKS NOT Obviate the need for low level** control algorithms
- **Instead, we want to look at potential role of introducing** interactive high-level instruction and interactive goal specification used so successfully by people in improving the overall efficiency of creating new robot behaviors.

Future (and Current) Work

- **Remember and re-use strategies**
	- ***** recognizing which primitives are useful in a given situation
	- **representation of task and goal in order to recognize** similar tasks
- **EXAMPERENT EXAMPLE IN THE EXAMPLE IS LEARNING**
	- **Example 1 and a set of the system without** programming

Filank you for your attention....