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Objective

• An autonomous robot 
should reason in terms of 
(typically discrete) symbolic 
concepts. (~language)

• Origin of symbols and rules?
– Grounded in (typically 

continuous) physical 
interaction.

– Learnable/refinable.
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Object-Action Complex

• Describes how an object is affected by 
an action.

• Can be executed to actually do it.
• Allows reasoning based on experience.
• Combines notions of

– affordances (perception)
– prediction (action, state transitions)
– reasoning (~STRIPS)
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A Unified Framework

• Rule-based reasoning systems:
– mostly discrete, deterministic, fixed rules

– OACs: symbolic or sub-symbolic state spaces, 
quantitative and uncertain results, rules 
grounded in physical interaction

• Unified concept of predictive rules:
– various continuous or discrete domains

– various levels of abstraction

• Learning and self-evaluation:
– representations, control programs, predictions
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Outline

• Part I:
– Definitions around OACs

• Part II:
– Examples of individual OACs
– Examples of OACs in interaction
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How an OAC sees the world
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How an OAC sees the world
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Levels of Abstraction

• An OAC represents the state of affairs 
at a certain level of abstraction,

• and maps it onto a lower level of 
abstraction.

• State descriptions may differ between 
levels, but must be mappable between 
them (representational congruency).
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Design Principles

• Attributes to express relevant aspects of states.

• Prediction of action effects.

• Span the abstraction hierarchy down to physical 
sensors and effectors. (Build real robots!)

• Evaluate actions by comparing expected and observed 
action effects.

• Learn and adapt in various ways.

• Measure reliability in terms of success statistics.
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OAC Definition

• States
• Prediction function
• Statistical evaluation measure
• OAC
• Compact state descriptions for

s∈S

T :S S

M

id ,T , M 

range T  ,domain T 
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Execution

• Maps an OAC id to an experiment.
• May call upon other OACs.

• Descriptions of s
?
 may include 

whatever is useful (often more than 
the caller cares about).

• No arguments, but state attributes.

execute : idso , id , sp , sa
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Learning

Model

Sensed World

T, M

wso wsa

sa

so

CP

sp

wsp
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Actual World

updateT(x) updateM(x)

updateCP(x)
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OACs and Memory

• T, execute() and updateX() may 
share memory:
– updateCP() may refine control program 

parameters used by execute().
– Object models may be used by T and by 

execute().
– ...
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Building Blocks for Cognition

• OACs are formed and refined 
through
– sensorimotor exploration of 

effects of actions on percepts

– exploration of effects of OACs

• Hierarchical abstractions of 
experienced object-action 
effects.
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Part II: Examples of individual OACs 
and their Interactions

•
 

Graping on three abstraction levels
–

 
Generic Grasping

–
 

Object Specific Grasping
–

 
Grasping on planning Level

•
 

Grounding by interaction of OACs
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oacgenGrasp: Grasping unknown objects
•

 
Co-planarity Relation between visual entities define 
potential grasping affordances

. 
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T, Domain and Range
•

 
Defintion: oacgenGrasp=(genGrasp; T; M)

•
 

domain(T) =
–

 
Ω

 
Set of coplanar contours

•
 

range(T) = status(grasp) =
 {noplan, collision, void, unstable, stable}

–
 

Autonomous success evaluation
•

 
noplan: Motion planner did not find an executable path

•
 

collision: Force-torque sensor above threshold
•

 
void: Distance between fingers=0 after grasping attempt

•
 

unstable: distance b.f. grasping attempt > 0 and =0 after 
lifting

•
 

stable: distance b.f. > 0 after grasping attempt and after lifting

•
 

T predicts constantly ’stable’
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Execution and Experiment

•
 

Execution
–

 
selection of contour 
pair

–
 

compute potential end-
 effector positions

–
 

compute valid path
–

 
move gripper to 
pregrasp position

–
 

grasp
–

 
lift

Movie

Experiment
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Learning: updateCP

•

 

Since there are many co-planarity 
relations a large number of 
potential grasp options is computed

•

 

The system can choose which 
option to execute by evaluating the 
relevance of the different relations

–

 

coplanarity
–

 

distance
–

 

co-colority
–

 

parallelism
–

 

collinearity

Features

Type

Prediction
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Learning: updateCP

•
 

Learning Cycle: Long Term Statistics M
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Results

Cylindrical

Non-cylindrical
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Summary oacgenGrasp

•
 

oacgenGrasp associates visual features directly to 
potential grasps

•
 

OAC on a lower level
–

 
direct link between sensor 
and motor information

–
 

no object memory required
•

 
’Cheap way’

 
to achieve

 control over objects 
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oaco
graspObj: Object specific grasping

•
 

Given a 3D object represenation in the memory 

•
 

oaco
graspObj codes

 
the 

complete set of 
grasping affordances

•
 

Mid-level oac
–

 
requiring abstracted object 
knowledge
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oaco
graspObj

•
 

Coding Grasp Densities:
–

 
A grasp is just coded by the pose of the end-effector

–
 

A grasp attempt can be transformed to a 6D kernel which is the 
basic building of the grasp density

–
 

A full grasp density is build up by a number of kernels
•

 
Advantage
–

 
Representing the manifold of affordances

–
 

Optimal grasp coded as maximum on grasp density

Grasp density = Σi wi Ki
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T, Domain and Range
•

 
Defintion: oacgraspObject=(genGrasp; T; M)

•
 

domain(T) = 
{status(gripper) = empty; targetObj = o; o in memory}

•
 

range(T) = status(grasp) =
 {nopose, noplan, collision, void, unstable, stable}

•
 

T predicts constantly ’stable’
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Execution and Experiment

•
 

Two modes
–

 
Learning: explore all

 Grasping possibilities
–

 
Planning: Execute grasping 
option with highest success 
likelihood

success

unstable

collision

success

no
success
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Learning: updateCP
•

 
Learning of grasp-object 
associations

•
 

Sampling of densities 
through kernels starting 
with initial idea triggered 
e.g., by oacgenGrasp Grasp density = Σi wi Ki

Before Learning After Learning

Movie
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Success Rate (virt. + emp. errors) Success Rate (emp. errors)

long-termStatistics M

Results
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Summary oaco
graspObj

•
 

oaco
graspObj associates grasps to objects

•
 

OAC on a mid level
–

 
object memory required

•
 

Can be linked to grasping
 for planning
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Interaction of OACs: Grounding of 
objects and grasping affordances

•
 

Given 
–

 

an agent being able to grasp and 
–

 

an arbitrary (rigid, edge-dominated) 
object in a scene the agent does not 
know anything about beforehand

•
 

Without any supervision, the agent is 
supposed to

–

 

find out that there is a (novel) object in 
the scene,

–

 

compute a representation of the object 
and memorize it,

–

 

use the memorzied representation to 
recognize a new appearance of the 
object in the scene and detect its pose,

–

 

learn how to grasp the object in a way 
that allows for an optimal grasp in a 
given situation.

•
 

Basically it can be read as: Learning 
from ’scratch’

–

 

that there is an object,
–

 

how it looks like,
–

 

and how to grasp it.
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Accumulation
•

 
Once physical control over an 
object is achieved based on the 
predictions based on robot motion 
can be made that establish an 
object

•
 

Body knowledge can 
be used to substract 
gripper 
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Pose estimation

R. Detry, N. Pugeault, J. Piater. 
A Probabilistic Framework for 
3D Visual Object Representation. 
IEEE PAMI. 

•
 

Objects can be recognized and their pose being estimated
•

 
Method
–

 
Learn probablistic relational models of ECV feature combinations

–
 

Matching using probablistic inference 

ECV

ECV
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The first learning cycle: Birth of the object

Kraft et al. 2009. Birth of the Object: Detection of Objectness and Extraction of Object Shape through Object Action Complexes. 
International Journal of Humanoid Robotics (IJHR), 2008, 5, 247-265. 
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Second learning cycle: oaco
graspObj
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Grounding of objects and grasping affordances:
 Definition of the problem

•
 

Given 
–

 

an agent being able to grasp and 
–

 

an arbitrary (rigid, edge-dominated) 
object in a scene the agent does not 
know anything about beforehand

•
 

Without any supervision, the agent is 
supposed to

–

 

find out that there is a (novel) object in 
the scene,

–

 

compute a representation of the object 
and memorize it,

–

 

use the memorzied representation to 
recognize a new appearance of the 
object in the scene and detect its pose,

–

 

learn how to grasp the object in a way 
that allows for an optimal grasp in a 
given situation.

•
 

Basically it can be read as: Learning 
from ’scratch’

–

 

that there is an object,
–

 

how it looks like,
–

 

and how to grasp it.
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oacgraspObjPlan: Grasping for
 

Planning
•

 
State space of discrete 
attributes
–

 
E.g., no knowledge about 
where to grasp is coded
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oacgraspObjPlan: Using oaco
graspObj

 for 
Planning

•
 

Prediction T:

•
 

Learning: update T
–

 
The model learns the change to each attribute 
(effects) by treating the learning problem as a set of 
binary classification problems, with one classier for 
each feature.
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Plan using grasping: 
Downward Congruency

•
 

Execution of high level oac on the planning level 
–

 
acting in a discrete state space

–
 

triggers execution of the mid-level oac taking care of the optimal 
pose for the grasp based on the experiments made so far

•
 

Planning with grounded entities
•

 
Learning is an ongoing process that is taking place at all 
times at all levels
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OACs: Building Blocks for Cognition
•

 
OACs are formed and refined through sensoriomotor 
experience expressed in experiments

•
 

Learning is taking place all times at all levels
–

 
as a process parallel to the processes steared by, e.g., plans or 

automized behaviors.
•

 
OACs can be chained to create complex behaviors or 
plans 

•
 

Grounding of symbolic entities used for planning can be 
achieved by the interplay of OACs

•
 

Statements about success likelihoods of behaviours and 
plans can be made based on long-term statistics M
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