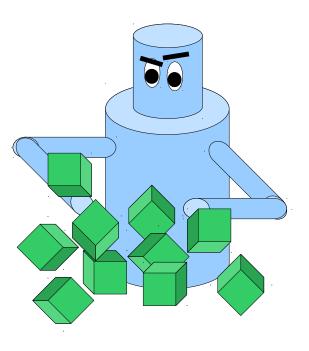
Bootstrapping Object and Grasping Knowledge with Object-Action Complexes

Norbert Krüger, Justus Piater, Christopher Geib, Ron Petrick, Mark Steedman, Florentin Wörgötter, Ales Ude, Tamim Asfour, Dirk Kraft, Damir Omrcen, Alejandro Agostini, Rüdiger Dillmann

Objective

- An autonomous robot should reason in terms of (typically discrete) symbolic concepts. (~language)
- Origin of symbols and rules?
 - Grounded in (typically continuous) physical interaction.
 - Learnable/refinable.



Object-Action Complex

- Describes how an object is affected by an action.
- Can be executed to actually do it.
- Allows reasoning based on experience.
- Combines notions of
 - affordances (perception)
 - prediction (action, state transitions)
 - reasoning (~STRIPS)

A Unified Framework

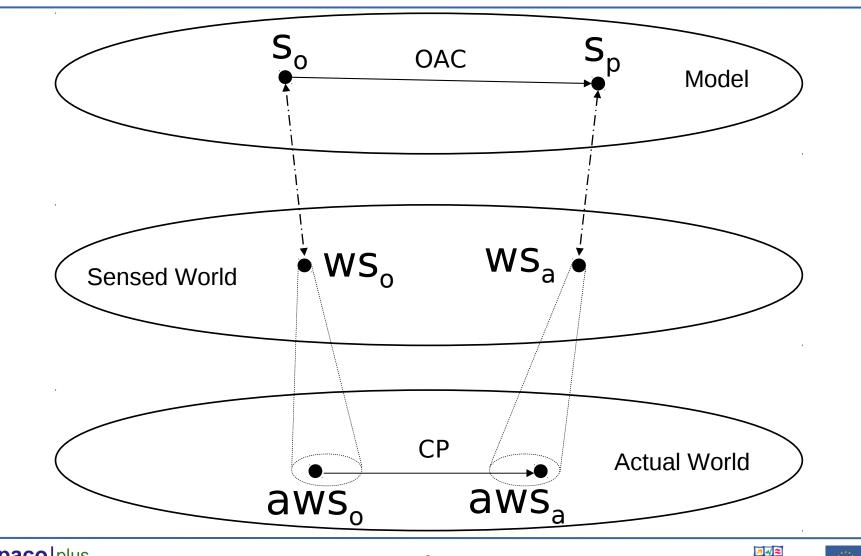
- Rule-based reasoning systems:
 - mostly discrete, deterministic, fixed rules
 - OACs: symbolic or sub-symbolic state spaces, quantitative and uncertain results, rules grounded in physical interaction
- Unified concept of predictive rules:

 various continuous or discrete domains
 various levels of abstraction
- Learning and self-evaluation:
 - representations, control programs, predictions

Outline

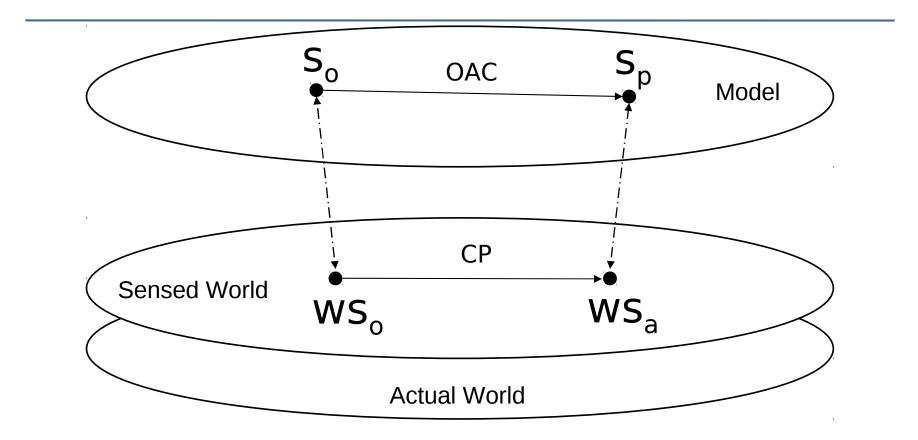
- Part I:
 - Definitions around OACs
- Part II:
 - Examples of individual OACs
 - Examples of OACs in interaction

How an OAC sees the world



CogSys Cognitive Systems

How an OAC sees the world



Levels of Abstraction

- An OAC represents the state of affairs at a certain level of abstraction,
- and maps it onto a lower level of abstraction.
- State descriptions may differ between levels, but must be mappable between them (representational congruency).

Design Principles

- Attributes to express relevant aspects of states.
- Prediction of action effects.
- Span the abstraction hierarchy down to physical sensors and effectors. (Build real robots!)
- Evaluate actions by comparing expected and observed action effects.
- Learn and adapt in various ways.
- Measure reliability in terms of success statistics.

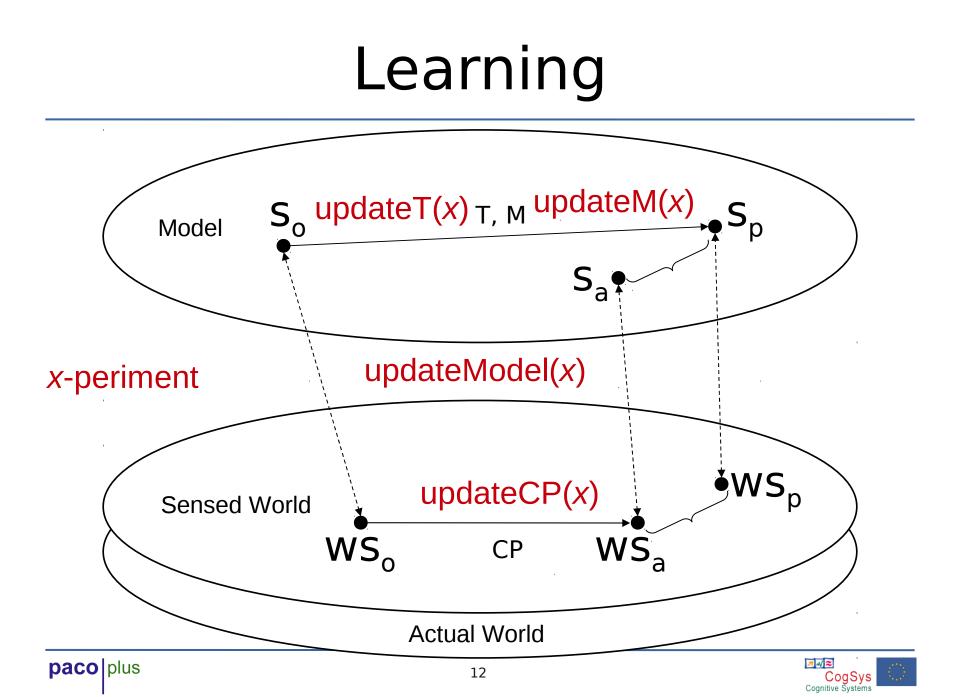
OAC Definition

- States $s \in S$
- Prediction function $T: S \rightarrow S$
- Statistical evaluation measure M
- OAC (id, T, M)
- Compact state descriptions for range(T), domain(T)

Execution

execute: id
$$\rightarrow$$
 (s_o , id, s_p , s_a)

- Maps an OAC id to an experiment.
- May call upon other OACs.
- Descriptions of s, may include whatever is useful (often more than the caller cares about).
- No arguments, but state attributes.

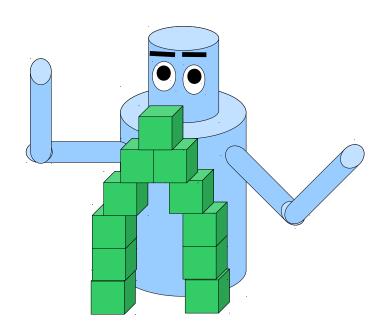


OACs and Memory

- T, execute() and updateX() may share memory:
 - updateCP() may refine control program parameters used by execute().
 - Object models may be used by T and by execute().

Building Blocks for Cognition

- OACs are formed and refined through
 - sensorimotor exploration of effects of actions on percepts
 - exploration of effects of OACs
- Hierarchical abstractions of experienced object-action effects.

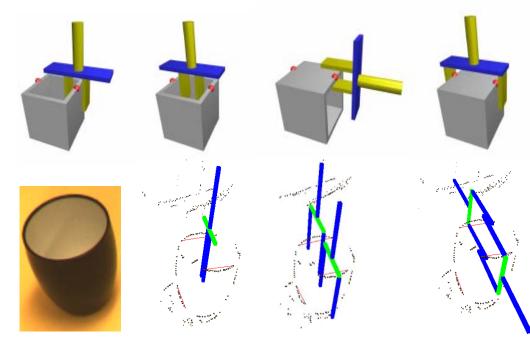


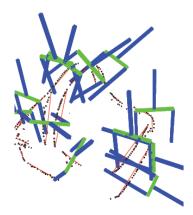
Part II: Examples of individual OACs and their Interactions

- Graping on three abstraction levels
 - Generic Grasping
 - Object Specific Grasping
 - Grasping on planning Level
- Grounding by interaction of OACs

oacgenGrasp: Grasping unknown objects

 Co-planarity Relation between visual entities define potential grasping affordances





T, Domain and Range

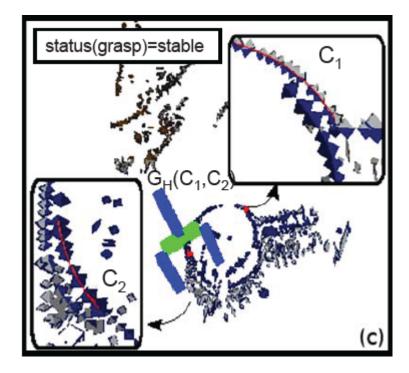
- Definition: oac^{genGrasp}=(genGrasp; *T; M*)
- domain(T) = { $\Omega \neq \emptyset$, status(gripper) = empty, $C \times C$ }
 - Ω Set of coplanar contours
- range(T) = status(grasp) =
 {noplan, collision, void, unstable, stable}
 - Autonomous success evaluation
 - noplan: Motion planner did not find an executable path
 - collision: Force-torque sensor above threshold
 - void: Distance between fingers=0 after grasping attempt
 - unstable: distance b.f. grasping attempt > 0 and =0 after lifting
 - stable: distance b.f. > 0 after grasping attempt and after lifting
- T predicts constantly 'stable'

Execution and Experiment

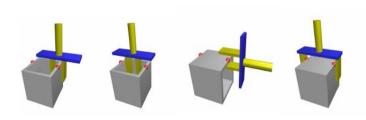
- Execution
 - selection of contour pair
 - compute potential endeffector positions
 - compute valid path
 - move gripper to pregrasp position
 - grasp
 - lift

Movie

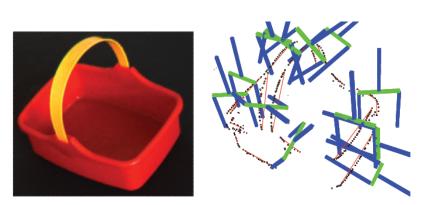
Experiment

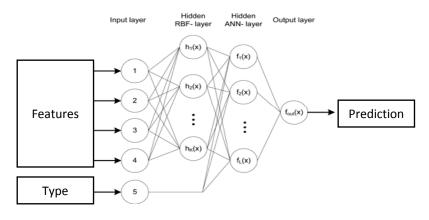


Learning: updateCP



- Since there are many co-planarity relations a large number of potential grasp options is computed
- The system can choose which option to execute by evaluating the relevance of the different relations
 - coplanarity
 - distance
 - co-colority
 - parallelism
 - collinearity



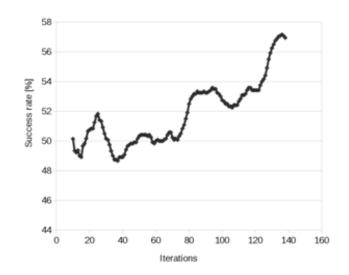


Learning: updateCP

• Learning Cycle:

while true do
 choose pair of contours C₁, C₂
 experiment=execute(GenGrasp);
 updateCP(experiment);
 updateM(experiment);
 drop object
end

Long Term Statistics M



Results

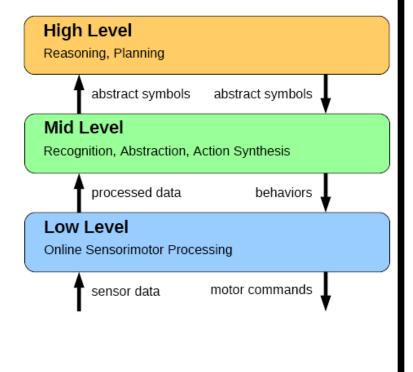
Cylindrical

Non-cylindrical

Learning Set	Test Set		
	Cylindrical	Non-cylindrical	Combined
Cylindrical Non-cylindrical Combined	57.6% 33.3% 57.5%	58.9% 51.3% 45.7%	58.3% 43.1% 51.1%
Without Learning	38.3%	45.7%	42.0%

Summary oacgenGrasp

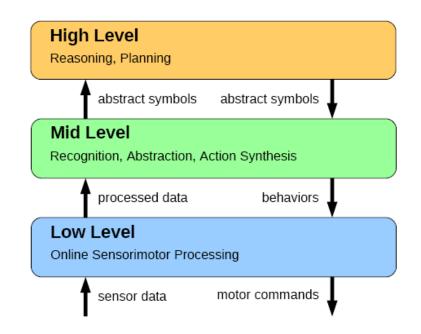
- oac^{genGrasp} associates visual features directly to potential grasps
- OAC on a lower level
 - direct link between sensor and motor information
 - no object memory required
- 'Cheap way' to achieve control over objects



oac, graspObj: Object specific grasping

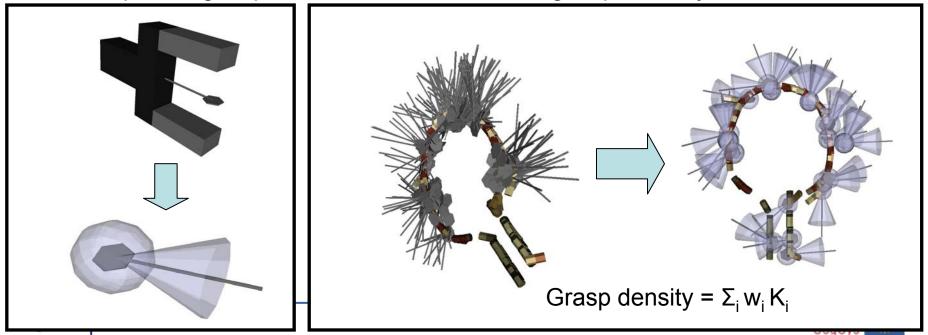
Given a 3D object represenation in the memory

- oac,^{graspObj} codes the complete set of grasping affordances
- Mid-level oac
 - requiring abstracted object knowledge



$oac_{o}^{graspObj}$

- Coding Grasp Densities:
 - A grasp is just coded by the pose of the end-effector
 - A grasp attempt can be transformed to a 6D kernel which is the basic building of the grasp density
 - A full grasp density is build up by a number of kernels
- Advantage
 - Representing the manifold of affordances
 - Optimal grasp coded as maximum on grasp density

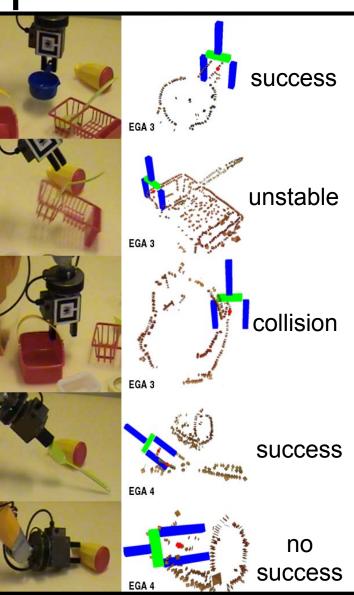


T, Domain and Range

- Definition: oac^{graspObject}=(genGrasp; *T; M*)
- domain(T) =
 {status(gripper) = empty; targetObj = o; o in memory}
- range(T) = status(grasp) =
 {nopose, noplan, collision, void, unstable, stable}
- T predicts constantly 'stable'

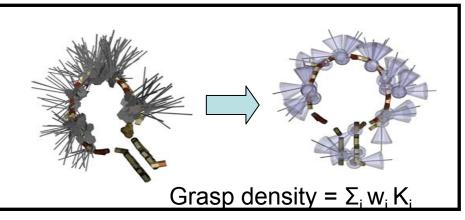
Execution and Experiment

- Two modes
 - Learning: explore all
 Grasping possibilities
 - Planning: Execute grasping option with highest success likelihood

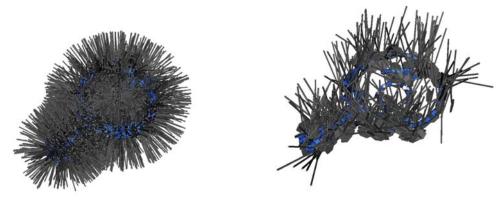


Learning: updateCP

- Learning of grasp-object associations
- Sampling of densities through kernels starting with initial idea triggered e.g., by oac^{genGrasp}



After Learning

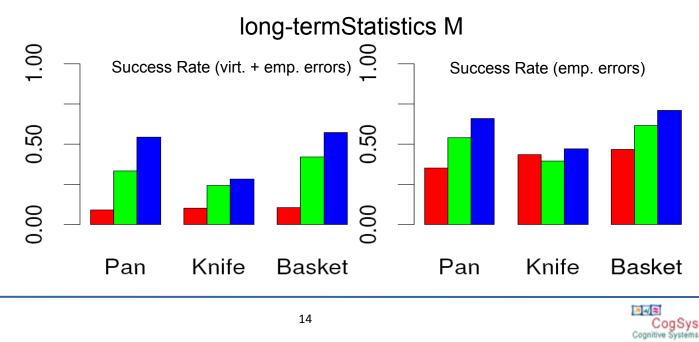


13

Movie

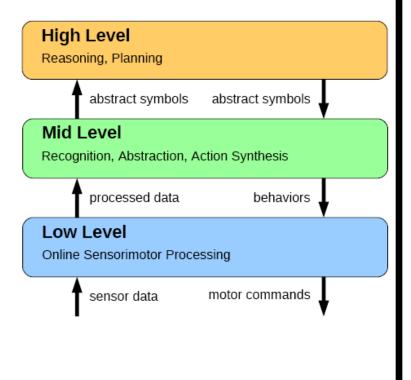
Before Learning

Results



Summary oac_ograspObj

- oac_o^{graspObj} associates grasps to objects
- OAC on a mid level
 object memory required
- Can be linked to grasping for planning



A 4

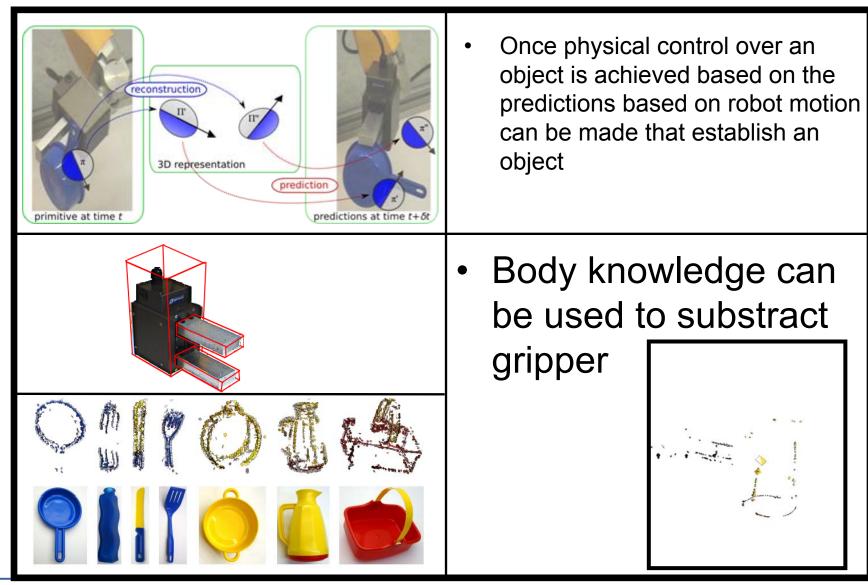
CogSys Cognitive Systems

Interaction of OACs: Grounding of objects and grasping affordances

• Given

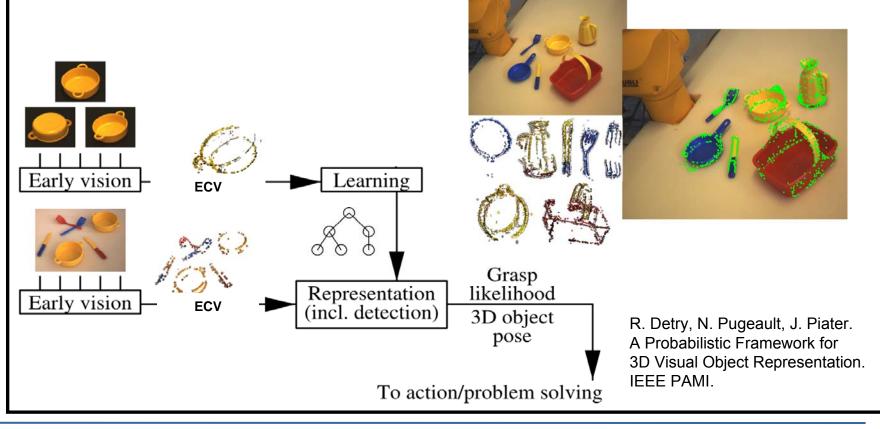
- an agent being able to grasp and
- an arbitrary (rigid, edge-dominated) object in a scene the agent does not know anything about beforehand
- Without any supervision, the agent is supposed to
 - find out that there is a (novel) object in the scene,
 - compute a representation of the object and memorize it,
 - use the memorzied representation to recognize a new appearance of the object in the scene and detect its pose,
 - learn how to grasp the object in a way that allows for an optimal grasp in a given situation.
- Basically it can be read as: Learning from 'scratch'
 - that there is an object,
 - how it looks like,
 - and how to grasp it.

Accumulation



Pose estimation

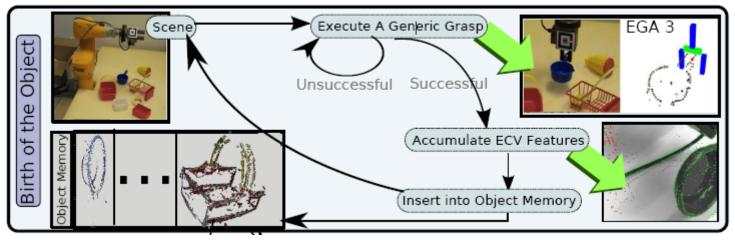
- Objects can be recognized and their pose being estimated
- Method
 - Learn probablistic relational models of ECV feature combinations
 - Matching using probablistic inference



The first learning cycle: Birth of the object

```
while status(grasp) ≠ stable do
    experiment = execute(GenGrasp);
    updateCP(experiment);
    updateM(experiment);
    open gripper
Accumulate object representation o<sub>i</sub>
if accumulation successful then
```

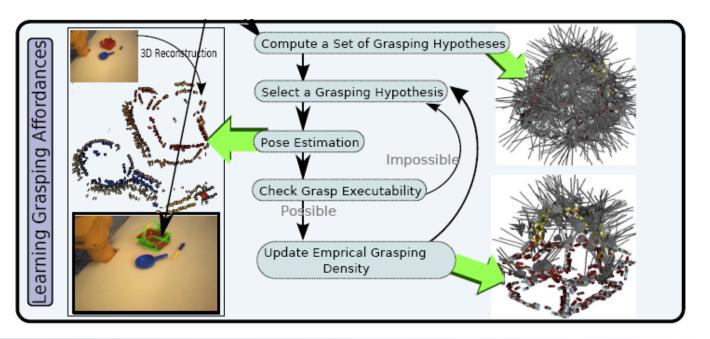
transfer o_i into object memory $\mathcal{M}^{\mathcal{O}}$



Kraft et al. 2009. Birth of the Object: Detection of Objectness and Extraction of Object Shape through Object Action Complexes. International Journal of Humanoid Robotics (IJHR), 2008, 5, 247-265.

Second learning cycle: oac_ograspObj

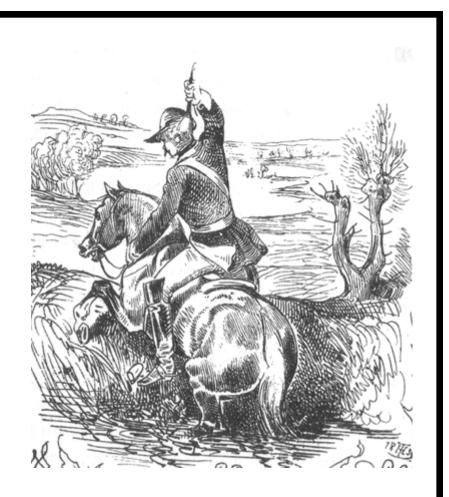
while instance of object o_i in scene do
 state.targetObj = o_i
 experiment = execute(graspObj_{oi});
 updateCP(experiment);
 updateM(experiment);
 open gripper
end



Grounding of objects and grasping affordances: Definition of the problem

• Given

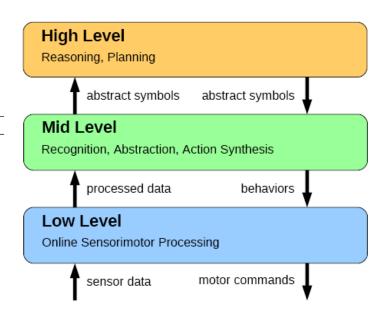
- an agent being able to grasp and
- an arbitrary (rigid, edge-dominated) object in a scene the agent does not know anything about beforehand
- Without any supervision, the agent is supposed to
 - find out that there is a (novel) object in the scene,
 - compute a representation of the object and memorize it,
 - use the memorzied representation to recognize a new appearance of the object in the scene and detect its pose,
 - learn how to grasp the object in a way that allows for an optimal grasp in a given situation.
- Basically it can be read as: Learning from 'scratch'
 - that there is an object,
 - how it looks like,
 - and how to grasp it.



oacgraspObjPlan: Grasping for Planning

- State space of discrete attributes
 - E.g., no knowledge about where to grasp is coded

Properties			
<pre>focusOfAttn(X)</pre>	A predicate indicating that object X is the agents focus		
clear(X)	of attention. A predicate indicating no object is stacked in X.		
gripperEmpty	A predicate describing whether the robot's gripper is		
inGripper(X)	empty or not. A predicate indicating that the robot is holding object		
inStack(X,Y)	X in its gripper. A predicate indicating that object X is in a stack with		
isIn(X,Y)	object Y at its base. A predicate indicating that object X is stacked in object Y .		
onShelf(X)	A predicate indicating that object X is statked in object I .		
onTable(X)	A predicate indicating that object X is on the table.		
open(X)	A predicate indicating that object X is open.		
radius(X) = Y	A function indicating that the radius of object X is Y .		
<pre>pushable(X)</pre>	A predicate indicating that object X is pushable by the robot.		
<pre>reachable(X)</pre>	A predicate indicating that object X is reachable for		
	grasping by the gripper.		
shelfSpace = X	A function indicating that there are X empty shelf spaces.		



oac^{graspObjPlan}: Using oac^{graspObj} for Planning

• Prediction T:

Name	Initial Conditions	Prediction
oac ^{graspObjPlan}	focusOfAttn(X)	inGripper(X)
	reachable(X)	not(gripperEmpty)
	clear(X)	<pre>not(onTable(X))</pre>
	gripperEmpty	
	onTable(X)	

- Learning: update T
 - The model learns the change to each attribute (effects) by treating the learning problem as a set of binary classification problems, with one classier for each feature.

Plan using grasping: Downward Congruency

 $\begin{aligned} & \text{experiment}_{topLev} = \texttt{execute}(\texttt{oac}^{\texttt{graspObjPlan}}) \\ & \text{experiment}_{midLev} = \texttt{execute}(\texttt{oac}^{\texttt{graspObj}}_o) \\ & \texttt{updateCP}(\texttt{experiment}_{midLev}) \\ & \texttt{updateM}(\texttt{experiment}_{midLev}) \\ & \texttt{updateT}(\texttt{experiment}_{topLev}) \\ & \texttt{updateM}(\texttt{experiment}_{topLev}) \\ & \texttt{updateM}(\texttt{experiment}_{topLev}) \end{aligned}$

- Execution of high level oac on the planning level
 - acting in a discrete state space
 - triggers execution of the mid-level oac taking care of the optimal pose for the grasp based on the experiments made so far
- Planning with grounded entities
- Learning is an ongoing process that is taking place at all times at all levels

OACs: Building Blocks for Cognition

- OACs are formed and refined through sensoriomotor experience expressed in *experiments*
- Learning is taking place all times at all levels
 - as a process parallel to the processes steared by, e.g., plans or automized behaviors.
- OACs can be *chained* to create complex behaviors or plans
- Grounding of symbolic entities used for planning can be achieved by the interplay of OACs
- Statements about success likelihoods of behaviours and plans can be made based on long-term statistics M

