

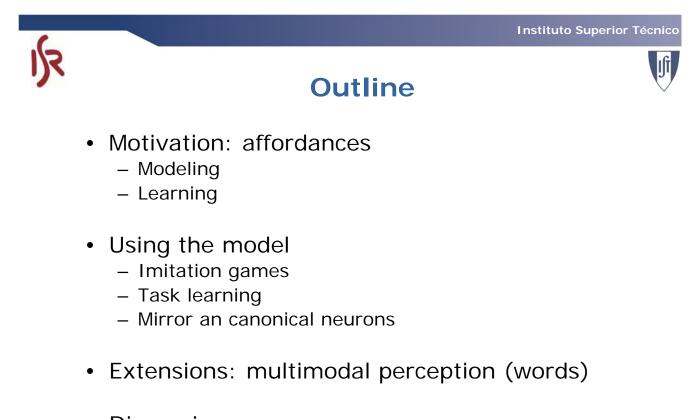
Institute for Systems and Robotics

On Learning and Using Affordances with Humanoid Robots

<u>José Santos-Victor</u>, Alexandre Bernardino, Luis Montesano and Manuel Lopes

Computer and Robot Vision Laboratory http://vislab.isr.ist.utl.pt

Object-Action Complexes Workshop Humanoids, Paris, Dec. 2009

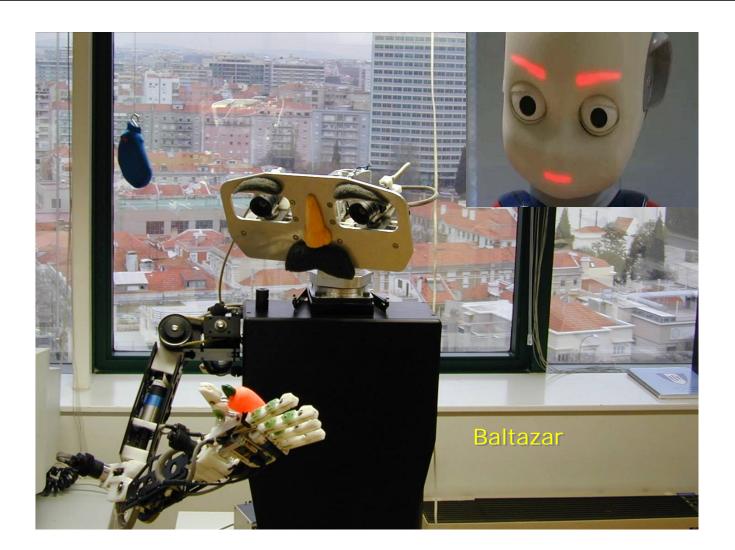


Discussion

Outline

Motivation: affordances

- Modeling
- Learning
- Using the model
 - Imitation games
 - Task learning
 - Mirror an canonical neurons
- Extensions: multimodal perception (words)
- Discussion



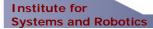
What are affordances?

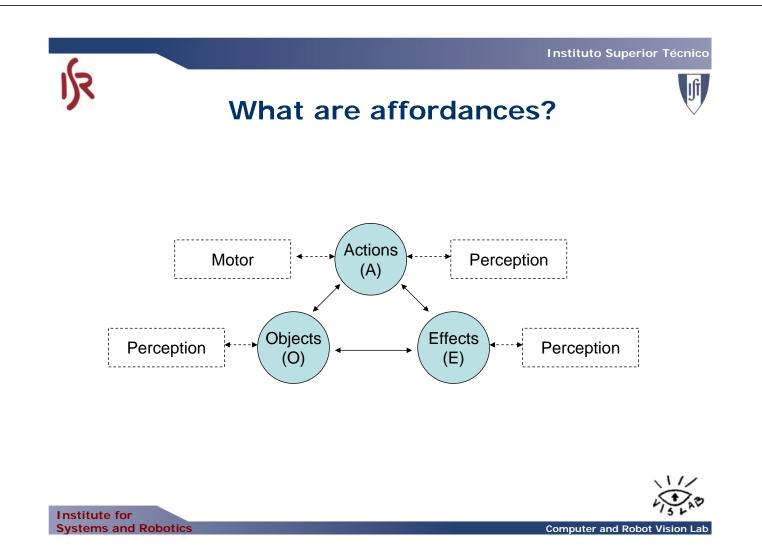
Affordances Definition

"The Affordances of the environment are what it offers the animal, what it provides or furnishes, either for good or ill" (Gibson, 1986)



What questions does a door pose?





ıſī

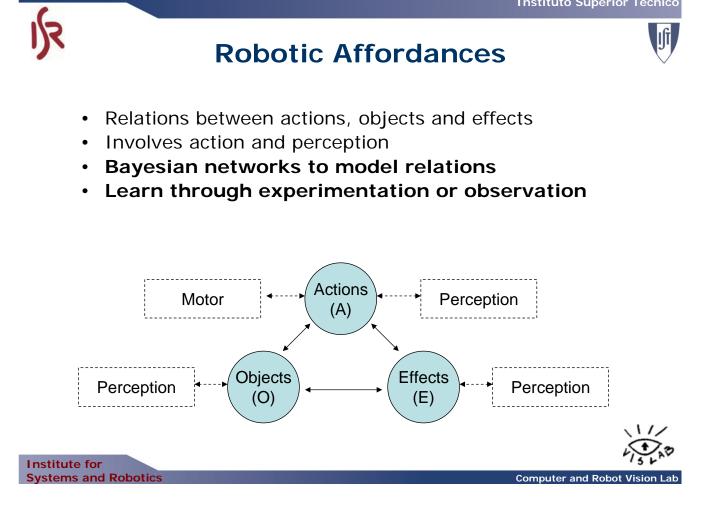
What are affordances?

Institute for Systems and Robotics

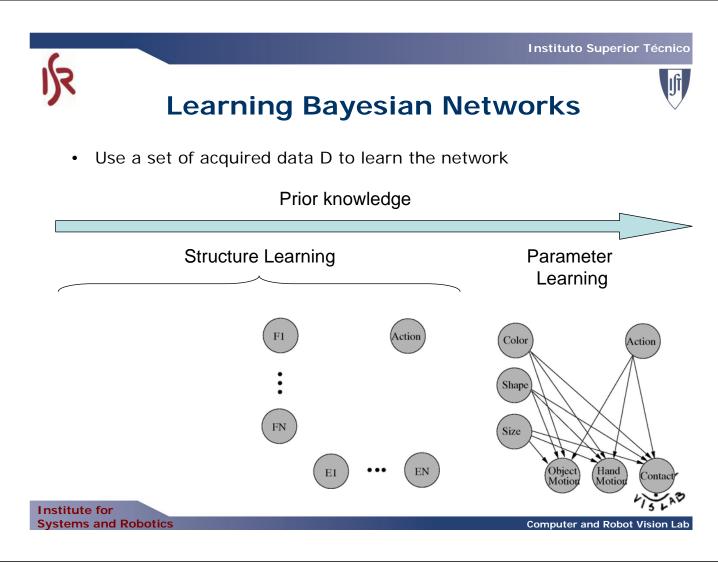
Computer and Robot Vision Lab

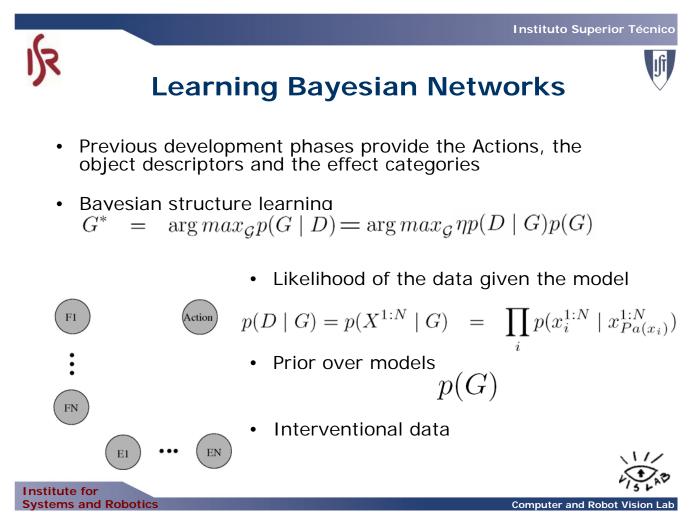
Instituto Superior Técnico

What are affordances?



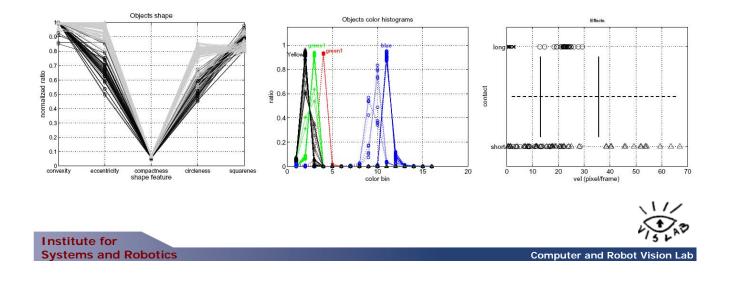
- We use **Bayesian Networks** to represent affordances
- Nodes are: •
 - Actions and action parameters
 - Object properties
 - Resulting effects
- BNs provide a unified and sound probabilistic framework for learning and using affordances





Object and effects description

- Percepts of object features and effects are clusterized in unsupervised manner
- The categories form the space of



Instituto Superior Técnico

Ift

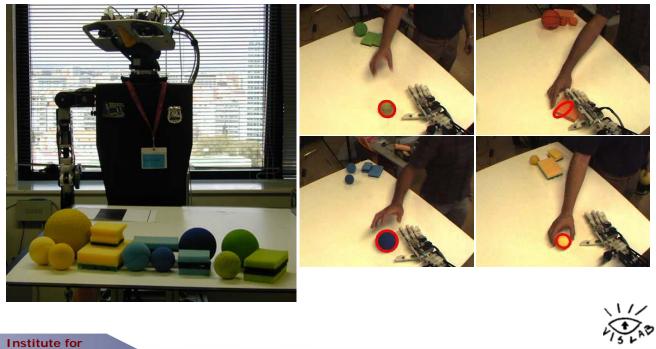
Object and effects description

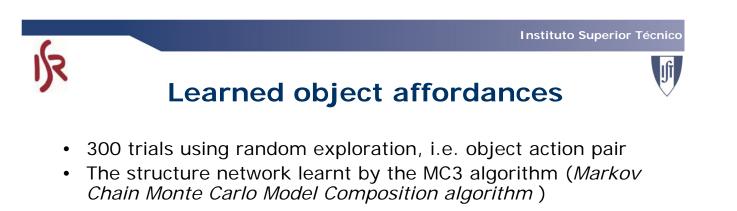
 Object features and effects are described using unsupervised learned clusters from

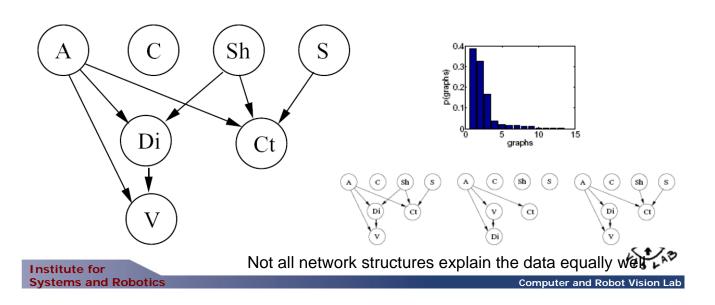
Symbol	Description	Values		
А	Action	grasp, tap, touch		
Н	Height	discretized in 10 values		
С	Color	green ₁ ,green ₂ , yellow, blue		
Sh	Shape	ball, box		
S	Size	small, medium, big		
V	Object velocity	small, medium, big		
HV	Hand velocity	small, medium, big		
Di	Object-hand velocity	small, medium, big		
Ct	Contact duration	none, short, long		

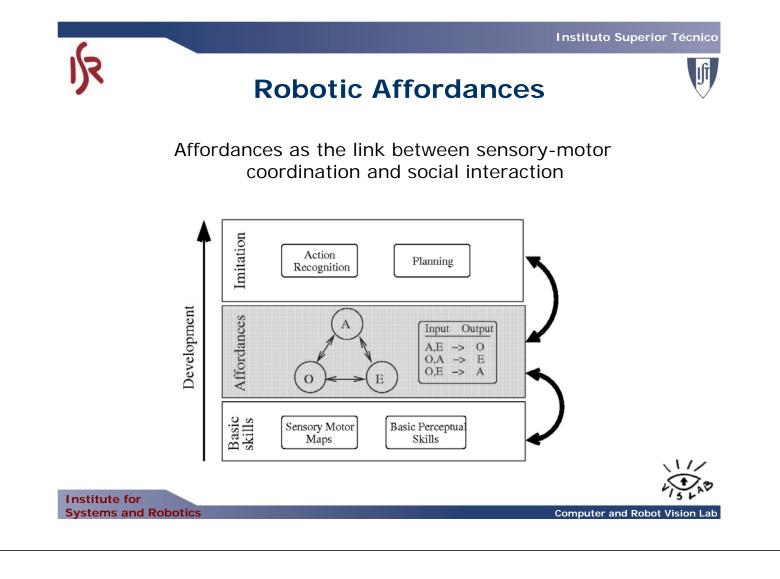
Computer and Robot

Learning affordances: Baltazar









Outline

- Motivation: affordances
 - Modeling
 - Learning
- Using the model
 - Imitation games
 - Task learning
 - Mirror an canonical neurons
- Extensions: multimodal perception (words)
- Discussion

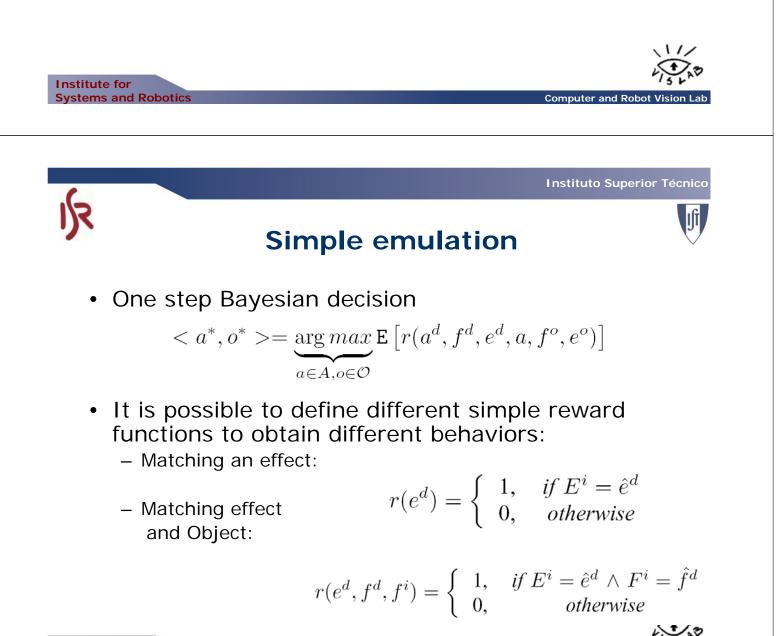
Instituto Superior Técnico

From SMM to social interaction

• Affordances can answer the following questions:

inputs	outputs	function
O,A)	E	Predict Effect
(O, E)	A	Recognize action & Planning
(A, E)	0	Object recognition & selection

- · Core capabilities for social interaction
- Emulation: achieve the same effect



Institute for Systems and Robotics

Imitation games

Objective: select <u>action and object</u> to obtain the same effect on <u>a similar object</u>

Demonstration (grasp on small box)

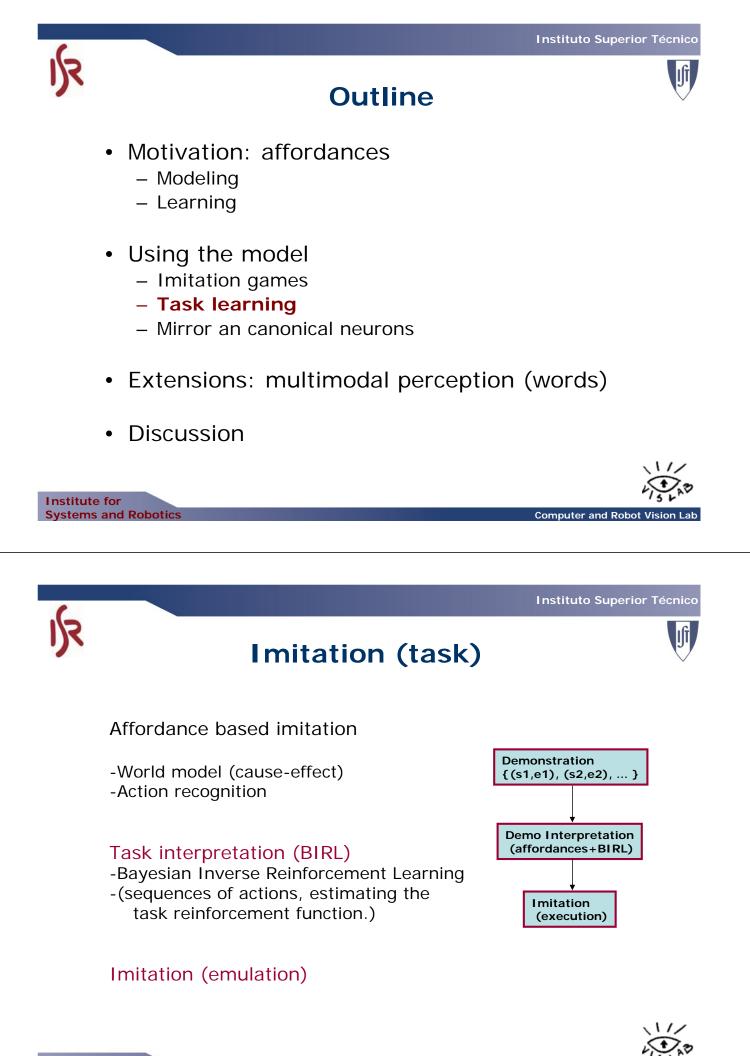
Institute for

Systems and Robotics

Which action gives the same effect?

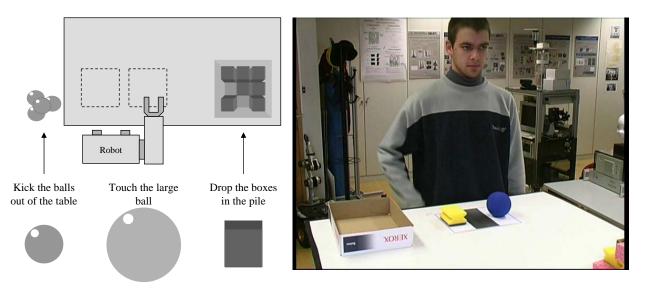
The reward now also includes information about the object features

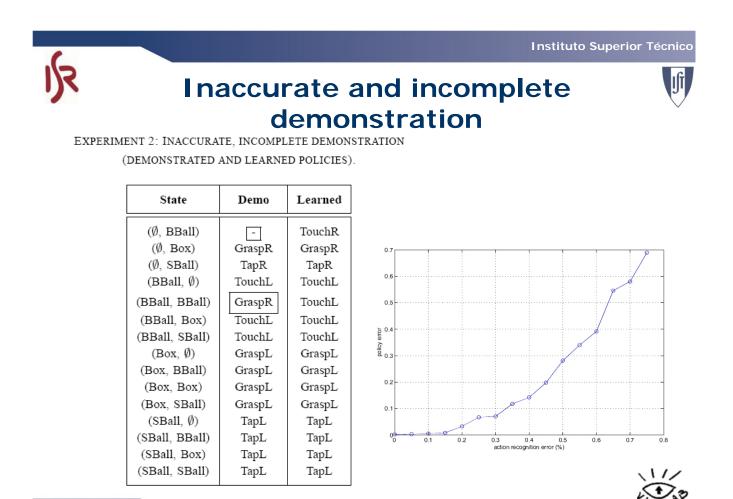
Computer and Robot Vision Lab



Computer and Robot

Experiments





Computer and Robot

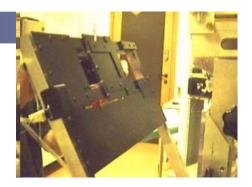
Imitation

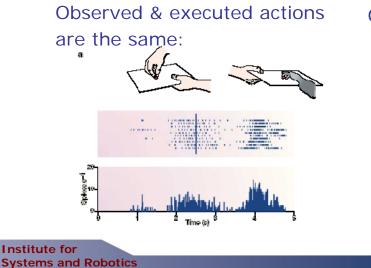
Institute for Systems and Robotics

Outline

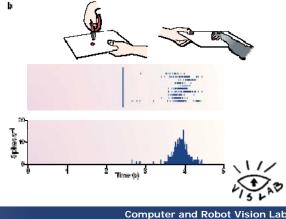
- Motivation: affordances
 - Modeling
 - Learning
- Using the model
 - Imitation games
 - Task learning
 - Mirror an canonical neurons
- Extensions: multimodal perception (words)
- Discussion

Active during observation of <u>another</u> <u>monkey's or experimenter's</u> hands interacting with objects.





Observed & executed action are NOT the same (tool):



Instituto Superior Técnico

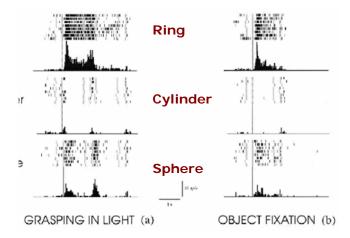
Canonical Neurons (affordances)

Respond also to the presentation of

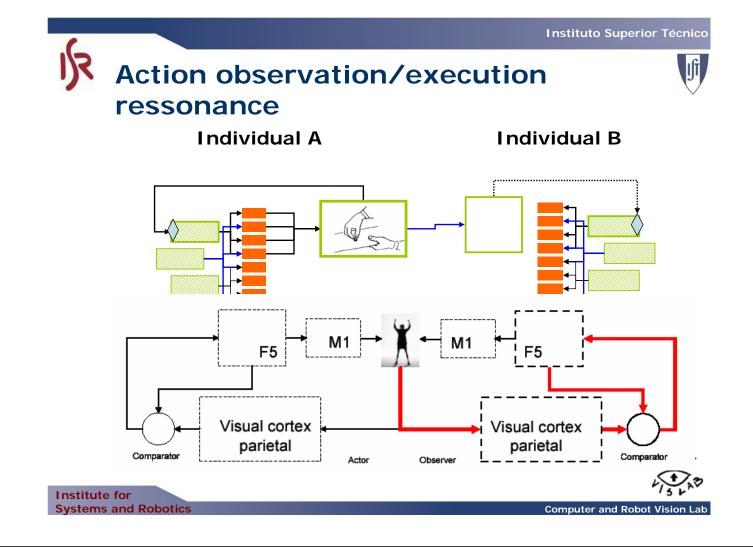
- food or
- graspable 3D objects,
- even in the absence of subsequent movement.

Object specific

(size and shape must be congruent with the type of grip coded by the neuron).



[L. Fadiga et al. Intl. Journal of Psychophysiology, 2000] ring shapes.



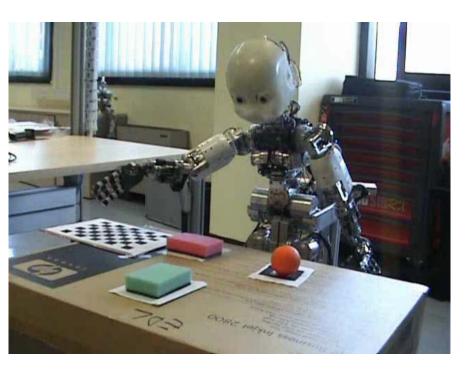
Instituto Superior Técnico

líf

Affordances vs mirror/canonical

inputs	outputs	function
[(O,A)]	E	Predict Effect
O(,E)	A	Recognize action & Planning
(A, E)	0	Object recognition & selection

iCub example



Institute for Systems and Robotics

Computer and Robot

Instituto Superior Técnico

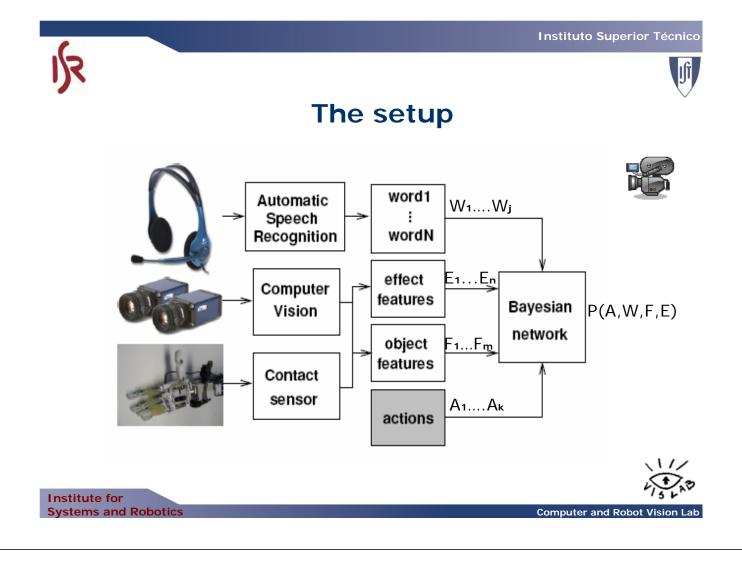
15

Outline

- Motivation: affordances
 - Modeling
 - Learning
- Using the model
 - Imitation games
 - Task learning
 - Mirror an canonical neurons

Extensions: multimodal perception (words)

Discussion



Instituto Superior Técnico

Adding words to the model

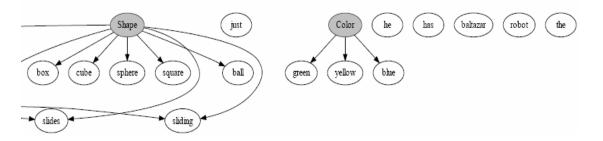
- \bullet p(X) represents the world behaviour, i.e. what the robot has learned through experience
- W a set of words, description of one experiment,
- Goal: to find mapping between W and X, achieved by estimating p(X,W)

$$p(X,W) = \prod_{\omega_i \in W} p(\omega_i \mid X_{\omega_i}) p(X)$$
⁽¹⁾

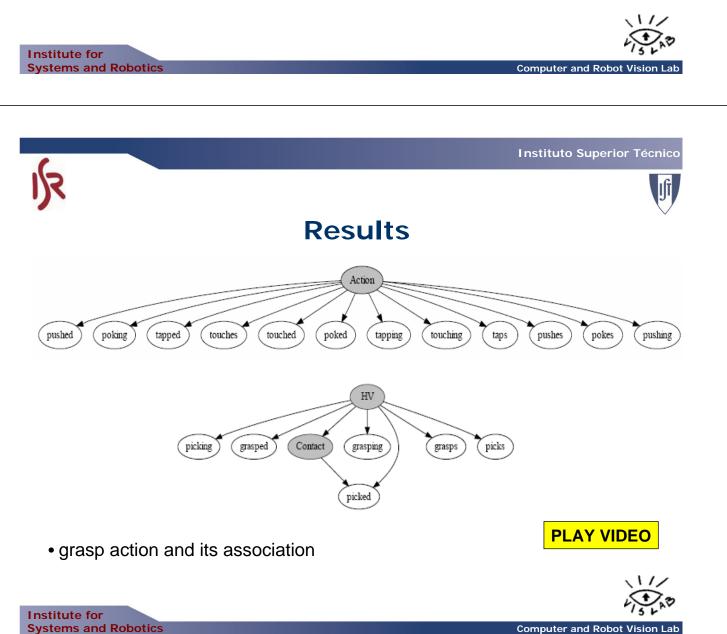
- • X_{ω_i} is a subset of nodes X which are parents of word ω_i
- strong assumption is the independence among words, a "bag of words"
- to choose from all models described by (1) we use variation of the simple greedy approach K2 algorithm.

Results

• Comparing results obtained with ideal speech recognizer (100%) and with the real one (81%), it is visible that mistakes from the real recognizer have only a small influence on the model performance



- model distinguishes non-referential words
- model sensitive to unbalanced training data



líf

(1//

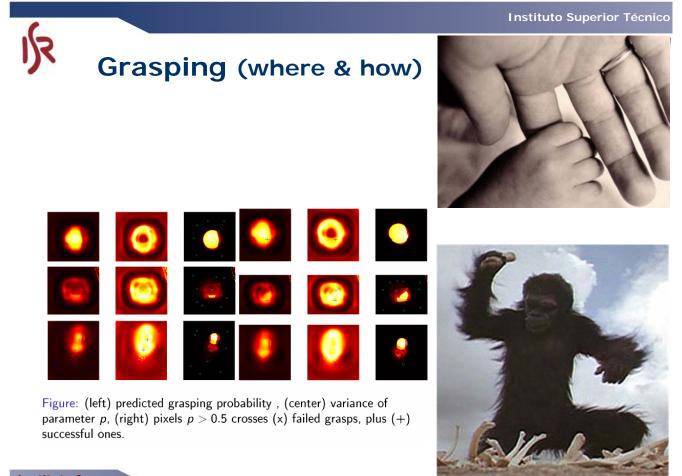
Results – Instructing the Robot

EXAMPLES OF USING THE BAYESIAN NETWORK TO SELECT ACTIONS AND OBJECTS

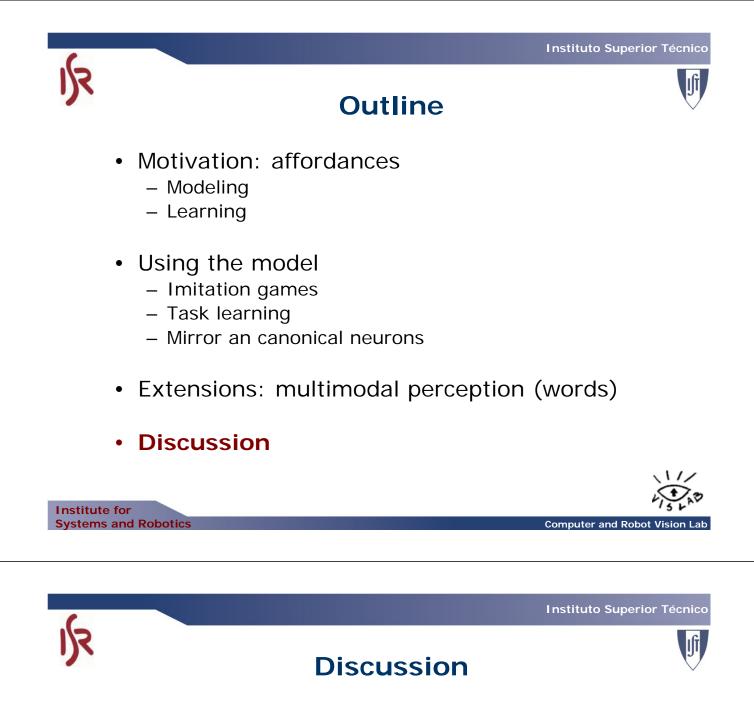
				Verbal input			
objects on the table	"small grasped"	"moving green"	"ball sliding"	"big rolling"	"has rising"	"sliding small"	"rises yellow"
light green circle big	-	grasp, p=0.034	-	tap, p=0.227	grasp, p=0.019	-	-
yellow circle medium	-	-	-	-	grasp, p=0.073	-	grasp, p=0.3
dark green box small	grasp, p=0.122	grasp, p=0.041	-	-	grasp, p=0.037	tap, p=0.25	-
blue box medium	-	-	-	-	grasp, p=0.037	-	-
blue box big	-	-	-	tap, p=0.022	grasp, p=0.017	-	-
dark green circle small	grasp, p=0.127	tap, p=0.127	-	-	grasp, p=0.064	-	-

- incomplete instructions
- both factors taken into consideration: available objects and verbal task assignment

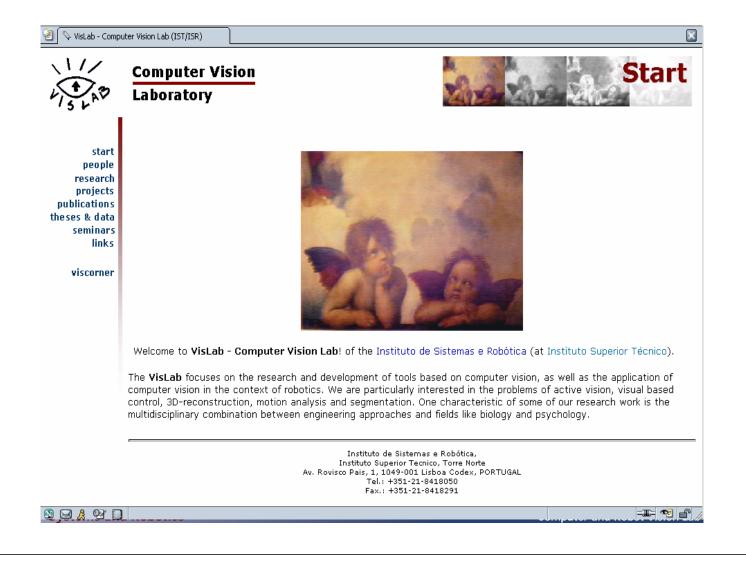
Institute for	LIS LAD
Systems and Robotics	Computer and Robot Vision Lab



Institute for Systems and Robotics



- Bridging sensorimotor layers and "higher cognitive behavior"
- Relationship to the "mirror" and "canonical" neurons
- Extension to other perceptual modalities (word/meaning)
- Future developments
 - Scale (structural learning with large dimensional graphs)
 - Batch versus incremental
 - Continuous versus discrete variables (parameterized is ok)
 - Application to grasping and handling



Instituto Superior Técnico

l

Credits (http://vislab.isr.ist.utl.pt)

Head, face, cover design: Ricardo Beira, M. Praça, L. Vargas
Vision & attention: Alexandre Bernardino, J.Ruesch
Learning, affordances; Manuel Lopes, Luis Montesano
Language acquisition: Jonas Hornstein, Cláudia Soraes
G. Salvi, Verica Krunic – Vision-speech association
Matteo Tajana – model based tracking
Ricardo Nunes – robot life support!

http://vislab.isr.ist.utl.pt José Santos-Victor – jasv@isr.ist.utl.pt

