
Grounding Language in Object-Centered Affordance

Mark Steedman, University of Edinburgh

http://www.inf.ed.ac.uk/~steedman

Humanoids Conference: Workshop 7 Paris Dec 2009

1



Outline

• Introduction

• I: Planning

• II: Grammar

• Conclusion

2



Introduction

• There is a long tradition associating language and other serial cognitive

behavior with an underlying motor planning mechanism (Piaget 1936,

Lashley 1951, Milleret al.1960).

• The evidence is evolutionary, neurophysiological, and developmental.

• It raises the possibility that language is much more closelyrelated to

embodied cognition than current linguistic theories of grammar suggest.

• I’m going to argue that practically every aspect of languagereflects this

connection transparently, via object-oriented action concepts.

• The talk discusses this connection in terms of planning as itis viewed in

Robotics and AI, with some attention to applicable machine learning

techniques.

• Work In Progress under EU FP6 IP PACO-PLUS
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Introduction

• The paper will define a path between representations at the level of the

sensory manifold and perceptron learning to the mid-level of plans and

explanation-based learning, and on up to the level of language grammar and

parsing model learning.

• At the levels of planning and linguistic representation, two simple but very

general combinatory rule types,Composition (the operatorB) and

Type-Raising(the operatorT) will appear repeatedly.

• In planning terms,

– compositionB is seriation, while

– type-raisingT is object-orientedaffordance
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I: Planning and Affordance

• Apes really can solve the monkeys and bananas problem, usingtools like old

crates to gain altitude in order to reach objects out of reach.

• Such planning involves

– Retrievingappropriate actionsfrom memory (such as piling boxes on top

of one another, and climbing on them),

– Sequencing themin a way that has a reasonable chance of bringing about

a desired state or goal (such as having the bananas).

– Rememberinggood plans.
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Figure 1: Ape and Bananas (Köhler 1925)
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Figure 2: There is Another Approach (Köhler 1925)
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Planning and Affordance

• Köhler showed that, in apes at least, such search seems to be

– reactiveto the presence of the tool, and

– forward-chaining, working forward from the tool to the goal, rather than
backward-chaining (working from goal to tool).

• The first observation implies that actions are accessed via perception of the
objects that mediate them—in other words that actions are represented in
memoryassociatively, as properties of objects—in Gibson’s 1966 terms, as
affordancesof objects.

• The second observation suggests that in a cruel and nondeterministic world it
is better to identify reasonably highly valued states that you have a reasonable
chance of getting to than to optimize complete plans.

• Animal planning therefore involvessearchingthrough possible
causally-related futures generated by the affordances of the available objects
in the situation that obtains.
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Planning and Affordance

• The problem of planning can therefore be viewed as the problem of finding a

sequence of actionsα, β, etc. in a “Kripke model”:

α
βαβ

Figure 3: S4 Kripke Model of Causal Accessibility Relation

Z Of course, to plan safely in a cruel world, you also need a probabilistic model

of success forα,β, and the ability to replan in real time when things go wrong.
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Representing LDEC Operators

• We can think of actions as STRIPS operators or as finite-statetransducers

(FSTs) over (sparse) state-space vectors

• FSTs areclosed under composition, and can be represented as simple neural

computational devices such as Perceptrons, or the Associative Network or

Willshaw Net (Willshaw 1981 cf. Marr 1969), which is specialized for

representing associations between sparse vectors.

• The autoassociative network represents the association between situations,

associating partial state vectors with the actions they afford.

• Similarly, the LDEC version of STRIPS update rule can be represented as a

hetero-associative Willshaw net whose output specifieschanges(Mourão

et al., cf. Modayil and Kuipers 2007; Amir and Chang 1968).
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Figure 4: Planning cycle: Retrieving the affordance ofpushfrom the autoassocia-

tive net, generating the next state from the heteroassociative net, updating the state

vector, and preparing to retrieve the affordance ofgo-through.
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Learning with the Kernel Perceptron
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Figure 5: Learning results in noisy and fully observable versions of the ZenoTravel

domain. Noise at level p% was simulated by flipping each bit inthe state vec-

tor with probability p. The test sets were noiseless, fully observable sequences of

observations and actions, of length 2000 (Mourãoet al.2009).
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Reducing Complexity using Attention

• We need the Kernel Generalization of Perceptrons for this (Mour̃aoet al.

2008, 2009).

Z Complexity isO(n2), so weneed to keep the state vector small.

• One “reactive” way to do this is to confine the elements tofluentsand related

preconditionsof eachactionassociated with perceptually evidentobjects.

• The “deictic” or attentional representations of Agre and Chapman (1987) and

Pasulaet al. (2007) are related.

13



II: From Planning to Language

• How do we get from seriation and affordance to language?

• An action(OAC) is a function from (partially specified) states to states

• An affordanceis a (typed, curried) function from (typed) entities to events

involving those entities.

• An objectis a function from entities intotype-raisedfunctionsTentity from

affordances into the results of applying them to the entity.

• Reactive planning isseriationor compositionB of events of type

state→ stateformed by applying objects to entities and affordances.

(1) get−out≡ B(Tdoor19 go−through)(Tdoor19 push)
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Example

• The ape’s concept of a box is a function from boxes into eventsthe box

falling, their climbing-on the boxandtheir putting the box on another box,
whose outcome the ape can evaluate, and forward-chain over.

• The affordances are of the following (Curried) types, wheree is the type of an
entity andt is the type of a state:a

– falle→t,

– climb-one→(e→t)

– put-one→(e→(e→t))

• Thus the ape’s box concept can be viewed as a set of object-concepts of type

– box1(e→t)→t

– box2(e→(e→t))→(e→t)

– box3(e→(e→(e→t)))→(e→(e→t))
aLanguages like Navajo with elaborate verb-classifier systems show we need a richer ontology!
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Lexicalizing Affordance: Type Raising

• These functions are the result ofType-raisingan object of typee over one-,

two, and three-place functions.

• The mathematical concept ofType-Raisingis closely related to the linguistic

concept of grammatical relation orCase.

• For example,box1(e→t)→t, a function over predicates likefalle→t corresponds

to asubject, marked in Latin or Japanese byNominative Case.
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Combinatory Categorial Grammar

• CCG eschews language-specific syntactic rules like (2) for English.

(2) S → NP VP

VP → TV NP

TV → {proved, finds, . . .}

• Instead, all language-specific syntactic information islexicalized, via lexical

entries like (3) for the English transitive verb:

(3) met := (S\NP)/NP

• This syntactic “category” identifies the transitive verb asa function, and

specifies the type and directionality of its arguments and the type of its result.
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Type Raising as Case

• We will assume that type-raising in the form of case is a universal primitive of

grammar, as it is of planning.

Z All noun-phrases (NP) like “Harry” are polymorphically type-raised.

• In Japanese and Latin this is the job of case morphemes like nominative-ga

and-us.

• In English NPs are ambiguous as to case, and must be disambiguated by the

parsing model.
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Syntactic Derivation

• (4) Harry met Sally
>T >T

S/(S\NP) (S\NP)/NP (S\NP)\((S\NP)/NP)

<
S\NP

>
S
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Relativization

• (5) that := (N\N)/(S/NP)

(6) (The woman) that Harry met
>T

(N\N)/(S/NP) S/(S\NP) (S\NP)/NP
>B

S/NP
>

N\N

(7) (The woman) that Harry says he met
>T >T

(N\N)/(S/NP) S/(S\NP) (S\NP)/S S/(S\NP) (S\NP)/NP
>B >B

S/S S/S
>B

S/NP
>

N\N

Z CCG reduces the linguists’ MOVE to adjacent MERGE
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Coordination

• (8) give Harry a book and Sally a record
<T <T <T <T

DTV TV\DTV VP\TV (X\X)/X TV\DTV VP\TV
<B <B

VP\DTV VP\DTV
>
<

VP\DTV
<

VP

Z CCG reduces the linguists’ COPY/DELETE to adjacent MERGE
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Syntax = Type-Raising and Composition

• CCGs combination of type-raising and composition yields a “nearly

context-free” permuting and rebracketing calculus closely tuned to the needs

of natural grammar.

• The argument cluster coordination construction (8) is an example of a

universal tendency for “deletion under coordination” to respect basic word

order: in all languages, if arguments are on the left of the verb then argument

clusters coordinate on the left, if arguments are to the right of the verb then

argument clusters coordinate to the right of the verb (Ross 1970):

(9) SVO: *SO and SVO SVO and SO

VSO: *SO and VSO VSO and SO

SOV: SO and SOV *SOV and SO
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Conclusion

• The lexicon is theonly locus of language specific infomation in the theory of

grammar.

• The universal projective syntactic component of natural language grammar is

based on thecombinatorsB,T.

• These combinators are providedready-made, by a sensory motor planning

mechanism that we share with a number of animals.

• OACs are a nice way to think about planning
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Appendix

Z If apes haveB,T, why don’t chimpanzees have human linguistic capability?

• In particular, why do they appear to lack a truly recursive syntax?

• Since the apes have everything necessary for syntactic projection (not to

mention mirror neurons and FOXP2), the only possible locus for the

difference is the human lexicon.

• Specifically, some distinctively recursive concepts that humans lexicalize

there.

• The main contender is the human concept of other minds (Tomasello 2001).

Z If so, the origin of recursion in syntax is essentially semantic.
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