Manipulation

Manipulations:

chain actions (usually by hands) involving objects towards a goal

Something goes on between you and the object(s) and this is a "procedure"

Relational and procedural (grammar) information is in the core of this

Recognize/"Understand"

From Pixels to AI \rightarrow forming "concepts" (and plans)

Manipulate

From AI to voltages \rightarrow executing "concepts"

Core Question: How can such processes be bootstrapped arriving at agent-own (internal) concepts free from external models (grounding problem)

Example: <u>Understand</u> how to "Make a sandwich"

Objects involved

Example part 1: Understand how to "Make a sandwich"

Objects involved + Action

Breads Hand Spreads Tools Cheese or Salami

Example: Understand how to "Make a sandwich"

Objects involved + Action

Breads Hand Spreads Tools Cheese or Salami And there is the And there problem, too

Example: Understand how to "Make a sandwich"

Core Idea:

Analyse the change of the relation between objects that occurs during a manipulation.

Needed:

Object descriptors → Segments Tracking Depth

Manipulation descriptors (grammar) Object categorization WITHIN a manipulation Learning

Core Idea: Object Action Complexes

Analyse the change of the relation between objects that occurs during a manipulation.

Categorization WITHIN a manipulation context.

Algorithm – Artificial Scenario

Original Images

Segementation & Tracking

Continuous Graphs

Note the deleting and forming of edges

Make linked graphs of segment centers

Algorithm – Object Relations

ρ 4,2
 } Object #2 : Full-to-Empty (yellow) Vessel
 Object #4 : Content

Reducing Complexity and adding Object Models 3D-Tracked Graphs in Real Time

Anaglyph Representation

Extract and track all segment centers

Algorithm – The essence is to extract the Topological Changes in the linked graphs as these are indicative of a "Change"

Extract and track all segment centers

Algorithm – Event Table

This table fully represents a manipulation

Algorithm – Similarity Measure

	<u>р</u> 2,1	р 3,1	<u>р</u> 6,1	$ ho_{_{3,2}}$	$ ho_{_{3,6}}$	
р 2,1	20	40	100	20	20	
р _{3,1}	100	40	20	20	0	
<u>р</u> 4,1	40	100	40	40	40	
р 4,2	20	40	20	20	100	
<u>р</u> 4,3	20	40	20	100	20	J

Similarity = 100%

Categorize Objects: Principles

Algorithm – The algorithm can extract **Semantic Similarity** in scenes with different numbers of objects and different motions as well as orientations, etc.

The algorithm can categorize object with same roles in a manip.

Analyse Manipulations

Action I: "Placing object", "Opening Book" and "Making a sandwich"

Analyse Manipulations

Action Classification

Object Categorization

Learning

"Putting an Object on a Plate"

"Taking an Object from a Plate"

Learning: Exclusion of false positives

Learning d/dt $\xrightarrow{100\%} \omega_{2,1} = 2$ ρ 2,1 L $\xrightarrow{25\%} \omega_{3,1} = 2$ ρ 3,1 K С $\xrightarrow{100\%} \omega_{5,1} = 2$ Repetition leads to ρ 5,1 C J $\longrightarrow \omega_{8,1} = 1$ р _{8,1} Κ С D the exclusion of $\xrightarrow{75\%} \omega_{3,2} = 2$ Ð ρ 3,2 A L spurious hence false $\xrightarrow{100\%} \omega_{5,2} = 2$ ρ 5,2 KD AF action transitions $\rightarrow \omega_{s,2} = 1$ CL ρ G (those with small . 8,2 $\xrightarrow{100\%} \omega_{5,3} = 2$ CKD ρ 5,3 weights). → *ω*_{8,3} =1 р _{8,3} C J $\rho_{_{8.5}}$ → W8,5 =1 K С D

Learning: Exclusion of false positives

Learning: Results

Learning – Test Data

Take then put

Put and take Put then take other

Mixed Actions: Put and take ALWAYS occur here in some order

Example Movie number

Learning: Results Temporal recognition

Learning: Results Temporal recognition

Learning – Test Data

"Putting on" and "taking from" subsequently

23

Learning: Results: Object categorization

Model Free

Manipulation recognition using a counting algorithm. Decomposible into chunks (anti-combi-explos!) Learning the "meaning" of a sequence of actions Object Categorization as to their role in a manipulation. Segments may(?) offer to hook on the object domain

(Some nice stereo and segmentation stuff GPU-based video real time (mostly))

The people behind this work area

Eren Aksoy: Graphs and Recontition Alexey Abramov: All real time stuff Johannes berr: Object models in the same framework (not discussed)