

Towards Action Representation based on Acoustic Packages

Britta Wrede, Lars Schillingmann, Katharina J. Rohlfing

CORLab Overview

- Cues for action segmentation in tutoring situations
 - Background on Acoustic Packaging [Brand et al., 2007]
 - Computational Model of Acoustic Packaging and Evaluation

Action Learning in infants

- Inferences about other's goals [Gergeley, 2003]
- AP for learning and representing actions

CORLab Acoustic Packaging

How to associate information in different modalities for language and action learning?

- **Synchrony** [Zukow-Goldring, 1997] [Matatyaho, Mason & Gogate et al., 2007]
 - Synchronous object movement and verbal labeling enhances object learning
 - More low-level synchrony in ACI than in AAI [Rolf et al., 2009]
- Acoustic Packaging [Brand et al, 2007]
 - Synchrony between language and events helps to divide sequence of events into units [Hirsh-Pasek & Golinkoff, 1996]
 - Speech segment determines perceived (end of) action

Question: Does speech influence how action is structured by infants? **italk Experiment:** 32 Infants of 7.5 – 11.5 months of age; Preferential Looking

CORLab Acoustic Packaging [Brand et al., 2007]

⇒ Speech structures action !

Universität Bielefeld CORELAD Computational Model of AP [Schillingmann et al., 2009]

Long term goals

- Temporal segmentation of actions
- Generating appropriate feedback
- Integration with action and speech learning approaches

Evaluation

 Does model reflect structural properties of tutoring behavior?

CORLab Computational Model of AP [Schillingmann et al., 2009]

Segmentation

Speech: by ASR (ESMERALDA)

Action: by motion history images

Temporal Association

Acoustic Package created if segments overlap

CORLab Computational Model of AP

) italk

[Schillingmann et al., 2009]

CORLab Evaluation

Data

- Videos from Motionese corpus (11 AAI, 11 ACI) and from babyface study (11 ARI)
- Task: stacking cups

Analysis

- Automatic detection of Acoustic Packages
- Measurements:
 - number of Acoustic Packages (#AP)
 - mean number of motions per Acoustic Package (#motions / AP)

Hypothesis

- ACI more structured than AAI
- More #AP and less #motions / AP in ACI

- Sig. more Acoustic Packages in ACI and ARI
- Sig. less Motions per Acoustic Packages in ACI and ARI
- \Rightarrow Hypothesis confirmed
- ⇒ Automatically detected Acoustic Packages find more structure in ACI and ARI
- \Rightarrow Acoustic Packages as basis for Action Representation?

CORLab Overview

- Cues for action segmentation in tutoring situations
 - Background on Acoustic Packaging [Brand et al., 2007]
 - Computational Model of Acoustic Packaging and Evaluation

Action Learning in infants

- Inferences about other's goals [Gergeley, 2003]
- AP for learning and representing actions

COR Lab Action learning in infants How to draw inferences about other's goal directed actions?

[Gergeley, 2003]

Assumption (wellformedness criterion):

Observed behavior

will bring about goal state

is most efficient means to reach goal

CORLab Action learning in infants

Support for Interpreting Action in IDS

CORLab Action learning in infants

Top-down processes: Language (syntactical constructions) can help to determine goal of action (e.g. path vs goal-oriented)

Goal-oriented

- "look the frog jumps to the leave"
- "look the yellow cup goes into the red one"

Path-oriented

- "look how the frog jumps"
- "look how you can turn the cup upside down"

CORLab Action learning in infants

italk

Interaction can help to determine goal of action (e.g. not path vs goal-oriented) – Hypothesis!

Goal-oriented

- Tutor: "look the frog jumps to the leave"
- (Infant lets the frog jump around)
- Tutor: "no no, the frog wants to go to the leave"

Path-oriented

- Tutor: "look how the frog jumps"
- (infant moves frog to the leave)
- Tutor: "no, it doesn't go like this, look how it jumps"

CORLab Overview

- Cues for action segmentation in tutoring situations
 - Background on Acoustic Packaging [Brand et al., 2007]
 - Computational Model of Acoustic Packaging and Evaluation

Action Learning in infants

- Inferences about other's goals [Gergeley, 2003]
- AP for learning and representing actions

CORLab AP for Action Learning and Representation

Discussion – Acoustic Packages

- Acoustic Packages as a learner-oriented segmentation of the action
- Multi-modal binding
 - AP contain specifically chuncked structure (tying verbal constructions to visual movements or series of movements)
- Interaction
 - AP segmentation will differ depending on learner feedback

CORLab AP for Action Learning and Representation

Discussion - Representation

- Multi-modal:
 - Verbal (lexical, syntactic constructions) (interpretation of observed behavior)
 - Visual (e.g. scene changes -> end state -> goal(s))
 - Trajectories (e.g. hand movements -> physical context -> constraints; hand movements -> behavior -> means)
 - Multi-modal structure (means, constraints, goal(s))
- Dynamic in nature:
 - Representation will change over duration of interaction
 - Representation will change over different interactions (and learning of other actions)

Thank you for your attention!