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Programming by Demonstration

Imitation Learning / Learning from Demonstration
Claimed to be a “natural” means of teaching robots.
Natural: Inspired by how humans educate each other

Humanoid robot: Interact (learn) as a human does

http://lasa.epfl.ch
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Teaching Robots to Do Tasks that Humans Do
Machine Learning, Control

[ Teaching skills as humans do
[ Teaching by showing the task

Kinesthetic Teaching:
Guiding the robot through the motion
Applicable to any type of robotic systems

http://lasa.epfl.ch
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Topics covered In this presentation

On the relative importance of time:

Time-independent vs. time-dependent encoding
(Contributors: M. Khansari, E. Gribovskaya, S. Kim)

Learning from multiple modalities:

Vision, touch, proprioceptive information
(Contributors: B. Argall, E. Sauser)

Learning from bad examples
(Contributors: D. Grollman)

http://lasa.epfl.ch
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Humanoids: What’'s next?

Simulation
Vision / Speech / Perception
Mechanisms
Walking - Perturbation

Movement representation: Time dependent or not?

http://lasa.epfl.ch
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Time dependency

 Time-dependent trajectory encodings
« splines, planners, HMM, GMM, etc
 Open-loop
« track deviations and heuristically realign after perturbation

http://lasa.epfl.ch
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Time-Dependent
Sensitivity of time-dependent systems to external perturbations:

A sine motion is learnt using Dynamic Movement Primitives (DMP)

té=—Di+ K(g—x) — K{g—x0)s + K f(s)
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Time dependency

 Time-dependent trajectory encodings
« splines, planners, HMM, GMM, etc
 Open-loop
« track deviations and heuristically realign after pertbation

 Time-independent description
« autonomous dynamical system
 Closed-loop
« Trajectories defined throughout state space
 How to stabilize?

http://lasa.epfl.ch
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Learning to be robust to perturbations

Learning a single law of motion - Dynamical Systems are core to the way the
human brain computes motion

Time-independent system | [£ = f (&)
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Learning to be robust to perturbations

Learning a single law of motion - Dynamical Systems are core to the way the
human brain computes motion

Time-independent system | [£ = f (&)

Build an estimate through non-linear mixture of linear systems through mixture
of Gaussians
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Effect of increasing a number of Gaussians in Encoding a dynamics
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Increase # of Gaussians from 1 — check stability
GMM fit with EM — Optimizes likelihood, not stability

E. Gribovskaya, M. Khansari and A. Billard, Int. Journal of Robotics Research, 2010.
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Local Stability

O’ : iy :
/ Determine conditions for ensuring

asympt. Stability — set open
o7 parameters of GMM

Incremental algorithm, optimization
® Q| under constraint

')

Stability in a given region

® b
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M. Khansari and A. Billard, ICRA 2010.
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First stability condition ensures one region funnels into the next

(1) (=S TE > (e—pb)T(ShH e Veeof
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R Stability Analys1s of DSs

Second stability condition ensures the correct direction of the transition of

the flow at hyper-planes (2) (VH)TE > 0 VECDr & €40 & Vhel.K

* Ukare the normal vector of hyper-planes q)k
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R Stability Analys1s of DSs

> Again first and second stability conditions should be checked
VE € OF & £ € d* until the motion reaches the last domain.
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A Stability Analys1s of DSs

Third stability condition ensures that origin & = 0 is the equilibrium point

of the system (has the minimum energy)
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Globally stable estlmate of the dynamics of motion
n1111 J(0) = Z_: Z: ( £(0) — )P
+ (€n(o) —€m)?)
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M. Khansari and A. Billard, IROS 2010.
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Time Independent -> No Timing Control

One cannot control explicitly the timing of a time-independent system

Keep the time-independency, but adapt the speed profile by moving with a
constant factor the means and covariance of the model
Damyonstration

70Tl original Gaussian
[ Modified Gaussian
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. Kim and A. Billard, Humanoids 2010.
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Catching a flying object
Position trajectory generation by velocity integration

{t +TI} At where t, is atime at i controlling step,

ti t,
4 =& + A Zf T t =t +At, t, =0;

A'is a velocity multiplier, ° =1;
T Im in g C (0] ntroller : kp and k, are the proportional and derivative gains respectively;

T" is an estimated motion duration starting

t. t. Nt ot St
ﬁ i+l ﬁ : + kp (T ' —T )— kd (T ' —T '1) from the beginning of motion attime t, as calculated at time t,
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Topics covered in this presentation

Learning from multiple modalities:

Vision, touch, proprioceptive information
(Contributors: B. Argall, E. Sauser)

http://lasa.epfl.ch
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Interactive learning to reuse and refine tasks

O Learning is incremental by nature
 Knowledge acquired in one task can be transmitted to another task

"I Reproduction ]’ Correction }"l Generalization }'

Refinement

N\
- 3
i s
Q‘ 1‘ i" :

‘l Generalization ]'

Reuse

http://lasa.epfl.ch
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Teaching through tactile sensing

Learning fine manipulation tasks through
tactile sensing at the finger tips.

Initial demonstration

Initial correction

Refinement
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Topics covered in this presentation

Learning from bad examples
(Contributors: D. Grollman)

http://lasa.epfl.ch
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Collect Failed Demonstrations

Consider only failed human demonstrations
(classical PbD approaches assume success)
Demonstrations = an example of what not to do.
Avoid repeating same mistakes
Instead of maximizing the similarity to demonstrator

Daniel H Grollman and Aude Billard, Donut as | do: Learning from failed demonstrations, submitted. http://lasa.epfl.ch
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Build a distribution (DONUT) that moves away from the bad demonstrations
-> Explore around the demonstrations and use the covariance to guide the
exploration.

- Move away from things that have been visited a lot during unsuccessful
demonstrations but remain within the vicinity of the demonstrations.

0.5 . ' ' ’l Base distribution: GMM |

|Donut distribution |

\

-8 =0.25 -

0.3r . .
> Exploration parameter that determines
e how far away the peaks are from the
s 02k base distribution.
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Build a distribution (DONUT) that moves away from the bad demonstrations
-> Explore around the demonstrations and use the covariance to guide the
exploration.

- Move away from things that have been visited a lot during unsuccessful
demonstrations but remain within the vicinity of the demonstrations.
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Learning from failed demonstrations

Daniel Grollman
Aude Billard
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The Future of Humanoids

This talk:

PbD enables robots to learn as humans do

Still fundamental issues to work on (Stability, time)
Interactive learning as humans do

Learning from failures, as humans do

Humanoids: Robots that @k as humans do?

Provocative question: Humanoids: Whsgttsottet?
What is a non-humanoid robot?

Are all robots humanoid in some respect?
Can we build an alien robot?
Is HUMANOIDS necessary?

http://lasa.epfl.ch



