

Teaching motor skills from humans to humanoids

Aude G. Billard Dan H. Grollman

LASA EPFL, Swiss Federal Institute of Technology Lausanne, Switzerland

{aude.billard,daniel.grollman}@epfl.ch http://lasa.epfl.ch

> "Humanoids: What's next?" Dec 7th, 2010, Nashville TN.

Programming by Demonstration

Imitation Learning / Learning from Demonstration

Claimed to be a "natural" means of teaching robots.

Natural: Inspired by how humans educate each other

Humanoid robot: Interact (learn) as a human does

Teaching Robots to Do Tasks that Humans Do Machine Learning, Control

 \Box Teaching skills as humans do \Box Teaching by showing the task

Kinesthetic Teaching: Guiding the robot through the motion Applicable to any type of robotic systems

Topics covered in this presentation

On the relative importance of time: *Time-independent vs. time-dependent encoding* (Contributors: M. Khansari, E. Gribovskaya, S. Kim)

Learning from multiple modalities: *Vision, touch, proprioceptive information* (Contributors: B. Argall, E. Sauser)

> Learning from bad examples (Contributors: D. Grollman)

Humanoids: What's next?

Simulation

Vision / Speech / Perception

Mechanisms

Walking - Perturbation

Movement representation: Time dependent or not?

Time dependency

- Time-dependent trajectory encodings
	- splines, planners, HMM, GMM, etc
	- Open-loop
		- track deviations and heuristically realign after perturbation

Time-Dependent

Sensitivity of *time-dependent* systems to *external perturbations*:

A sine motion is learnt using *Dynamic Movement Primitives (DMP)*

http://lasa.epfl.ch

Time dependency

- Time-dependent trajectory encodings
	- splines, planners, HMM, GMM, etc
	- Open-loop
		- track deviations and heuristically realign after pertbation
- Time-independent description
	- autonomous dynamical system
	- Closed-loop
		- Trajectories defined throughout state space
		- How to stabilize?

Learning to be robust to perturbations

Learning a single law of motion \rightarrow Dynamical Systems are core to the way the human brain computes motion

Time-independent system

$$
\left|\dot{\xi} = f\left(\xi\right)\right|
$$

Learning to be robust to perturbations

Learning a single law of motion \rightarrow Dynamical Systems are core to the way the human brain computes motion

Time-independent system

$$
\left|\dot{\xi} = f\left(\xi\right)\right|
$$

Build an estimate through non-linear mixture of linear systems through mixture of Gaussians

$$
\hat{\xi} = \sum_{k=1}^{K} \frac{\mathcal{N}(\xi; \theta^{k})}{\sum_{i=1}^{K} \mathcal{N}(\xi; \theta^{i})} \left(\sum_{\xi \in \xi}^{k} (\sum_{\xi}^{k})^{-1} \xi + (\mu_{\xi}^{k} - \sum_{\xi \in \xi}^{k} (\sum_{\xi}^{k})^{-1} \mu_{\xi}^{k}) \right)
$$
\n
$$
\hat{\xi} = \sum_{k=1}^{K} h_{k}(\xi) (A_{k} \xi + b_{k})
$$
\nhttp://lasa.epfl.ch

Increase $#$ of Gaussians from $1 -$ check stability GMM fit with EM – Optimizes likelihood, not stability

Local Stability

Determine conditions for ensuring asympt. Stability – set open parameters of GMM

Incremental algorithm, optimization under constraint

Stability in a given region

 $\forall \xi \in \Phi^k \& \xi \neq 0 \& \forall k \in 1..K$

$$
\xi=0\in\Omega^1
$$

M. Khansari and A. Billard, ICRA 2010.

First stability condition ensures one region funnels into the next

 \triangleright Again first and second stability conditions should be checked $\forall \xi \in \Omega^k \& \xi \in \Phi^k$ until the motion reaches the last domain.

Learning Algorithms and Systems Laboratory - LASA Local Stability Analysis of DSs Fédérale de lausanne

Third stability condition ensures that origin $\xi = 0$ is the equilibrium point

of the system (has the minimum energy)

Globally stable estimate of the dynamics of motion $\lim_{\delta \to 0} J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=0}^{T^n} \left((\hat{\xi}^{t,n}(\theta) - \xi^{t,n})^2 + \right)$ + $(\hat{\dot{\xi}}^{t,n}(\theta) - \dot{\xi}^{t,n})^2$

subject to

M. Khansari and A. Billard, IROS 2010.

Time Independent -> No Timing Control

One cannot control explicitly the timing of a time-independent system

Keep the time-independency, but adapt the speed profile by moving with a constant factor the means and covariance of the model

New control law

$$
\dot{\hat{\xi}} = \tilde{\hat{f}}(\xi) = \lambda \hat{f}(\xi)
$$

S. Kim and A. Billard, Humanoids 2010.

Catching a flying object

Position trajectory generation by velocity integration :

$$
\xi^{t_{j+1}} = \xi^{t_j} + \lambda^{t_i} \sum_{l=1}^{L} \xi^{\left\{t_j + \frac{\Delta t}{L}l\right\}} \frac{\Delta t}{L}
$$

Timing Controller :

T im ing Controller :
\n
$$
\lambda^{t_{i+1}} = \lambda^{t_i} + k_p \left(\hat{T}^{t_i} - T \right) - k_d \left(\hat{T}^{t_i} - \hat{T}^{t_{i-1}} \right)
$$

where t_i is a time at $i^{\prime h}$ controlling step, a time at
 $t_0 = 0$; t_i is a time at i^{th} where t_i is a time at i^{th}
 $t_{i+1} = t_i + \Delta t$, $t_0 = 0$;

$$
t_{i+1} = t_i + \Delta t, \ t_0 = 0
$$

 $\mathbf{0}$ = $t_i + \Delta t$, $t_0 = 0$;
is a velocity m ultiplier, $\lambda^{t_0} = 1$; $t_{i+1} = t_i + \Delta t$, $t_0 = 0$;
 λ^{t_i} is a velocity multiplier, $\lambda^{t_0} = 1$;

 λ^{t_i} is a velocity multiplier, $\lambda^{t_0} = 1$;
k _p and k _d are the proportional and derivative gains respectively; *p* and k_d are the proportional and derivation
^{t_i} is an estimated motion duration starting

 \hat{T}^{t_i}

 \hat{T}^{t_i} is an estimated motion duration starting
from the beginning of motion at time t_0 as calculated at time t_i

Topics covered in this presentation

On the relative importance of time: *Time-independent vs. time-dependent encoding* (Contributors: M. Khansari, E. Gribovskaya, S. Kim)

Learning from multiple modalities: *Vision, touch, proprioceptive information* (Contributors: B. Argall, E. Sauser)

> Learning from bad examples (Contributors: D. Grollman)

Interactive learning to reuse and refine tasks

- \Box Learning is incremental by nature
- \Box Knowledge acquired in one task can be transmitted to another task

Teaching through tactile sensing

Learning fine manipulation tasks through tactile sensing at the finger tips.

Topics covered in this presentation

On the relative importance of time: *Time-independent vs. time-dependent encoding* (Contributors: M. Khansari, E. Gribovskaya, S. Kim)

Learning from multiple modalities: *Vision, touch, proprioceptive information* (Contributors: B. Argall, E. Sauser)

> Learning from bad examples (Contributors: D. Grollman)

Learning Algorithms and Systems Laboratory - LASA Learning what Not to Do

Collect Failed Demonstrations

Consider only failed human demonstrations (classical PbD approaches assume success) Demonstrations = an example of what not to do. Avoid repeating same mistakes Instead of maximizing the similarity to demonstrator

FÉDÉRALI

Learning Algorithms and Systems Laboratory - LASA Learning what Not to Do

Build a distribution (DONUT) that moves away from the bad demonstrations \rightarrow Explore around the demonstrations and use the covariance to guide the exploration.

 Move away from things that have been visited a lot during unsuccessful demonstrations but remain within the vicinity of the demonstrations.

Learning Algorithms and Systems Laboratory - LASA Learning what Not to Do

Build a distribution (DONUT) that moves away from the bad demonstrations \rightarrow Explore around the demonstrations and use the covariance to guide the exploration.

 Move away from things that have been visited a lot during unsuccessful demonstrations but remain within the vicinity of the demonstrations.

Learning from failed demonstrations

Daniel Grollman Aude Billard

http://lasa.epfl.ch

This talk:

PbD enables robots to learn as humans do Still fundamental issues to work on (Stability, time) Interactive learning as humans do Learning from failures, as humans do

Humanoids: Robots that **that** as humans do?

Provocative question: Humanoids: Whattsotheat? What is a non-humanoid robot? Are all robots humanoid in some respect? Can we build an alien robot? Is HUMANOIDS necessary?