
Machine Learning Challenges
for Truly Autonomous Robots

Stefan Schaal
Computer Science, Neuroscience, & Biomedical Engineering

University of Southern California, Los Angeles
&

ATR Computational Neuroscience Laboratory
Kyoto, Japan

sschaal@usc.edu
http://www-clmc.usc.edu

1Sunday, December 12, 2010

mailto:sschaal@usc.edu
mailto:sschaal@usc.edu
http://www-clmc.usc.edu
http://www-clmc.usc.edu

Some Grand Challenges for the Next Century:
Brains, Autonomous Robots, and Information Technology

How does the brain learn and
control complex motor skills?
Applications: Facilitate and

personalize learning, neuro-
prosthetics, brain machine

interfaces, movement
rehabilitation, etc.

Can we create an
autonomous robot?
Applications: assistive
robotics, hazardous
environments, space

exploration, etc.

What are the fundamental principles of autonomous
learning, self-organization, self-assembly, planning?

Applications: Models, predictions, and control of systems
from cells and nano-structures to robots to societies

!"

!
"

! !
"

!
!"

!
!

!
!

!
!!

!
!

! ! !"##""

!
"!

!
!!

!

!

!
!

!
"!

!
"#

!
"!

!
"! !

"!
!
"#

!
"!

!
"#

Autonomous
Systems

2Sunday, December 12, 2010

Why Learning At All?

• Couldnʼt we obtain models of
– kinematics (from CAD)
– dynamics (from CAD and system identification)
– the environment (3D vision, range finders, …)
– objects (3D models)
– etc.

and just perform planning based on these models?
• But ...

– kinematics and dynamics can change over time (wear and tear) and often we
donʼt have accurate models to begin with (errors, unknown nonlinearities)

– the environment is dynamic, stochastic, incompletely perceivable
– new (un-modeled) situations may be encountered
– the environment is hard to model (friction, contacts, surface properties, complex

unknown dynamics)
– the search spaces for planning become too high dimensional

such that learning seems to become mandatory to operate outside of laboratory
environments

3Sunday, December 12, 2010

What Should be Learned?

• A Library of Robust Perceptuo-Motor Skills for
Appropriate Environments/Objects (Affordances)
– A motor skill is a series of movements that combine to produce a

goal directed, efficient action.
- Can be formalized as learning control policies

- Thus, at the highest level, we need to learn
• the policy π for every motor skill
• the context when to apply it and when to abort (switch) it

- If the control policy is structured, subproblems may be learned in isolation, e.g.,
• internal models
• planning modules
• state estimators
• etc.

u(t) = π i (x,t,α)

4Sunday, December 12, 2010

Different Classes of Tasks Require
Different Methods to Compute Policies

• Tracking Tasks
– e.g., tracing a figure-8 on a piece of paper

• Regulator Tasks
– e.g., balance control (pole balancing, biped balancing,

helicopter hover)
• Discrete Tasks
– e.g., reach for a cup, tennis forehand, basket ball shot

• Periodic Tasks
– e.g., legged locomotion, swimming, dancing

• Complex sequences and superposition of the above
– e.g., assembly tasks, “empty the dishwasher”, playing tennis,

almost every daily life behavior

Level of Difficulty
5Sunday, December 12, 2010

Different Learning Methods are
Suitable for Different Tasks

• Supervised Learning
– direct inverse model learning, forward model learning (prediction)
– “distal teacher”
– feedback error learning, adaptive learning controllers

• Reinforcement Learning
– value-function based approaches
– direct policy learning (e.g., policy gradients)

• Learning Modularizations
– primitives, schemas, basis behaviors, units of actions, macros, options
– parameterized policies

• Imitation Learning
– learning a policy from observation
– learning the task/goal intent from observation (inverse RL)
– learning an initial strategy for subsequent self-improvement

• Dimensionality Reduction, Feature Extraction
– task relevant variables (in contrast to pure data compression)

Past to Present
6Sunday, December 12, 2010

Machine Learning
is going to be the
dominant way to
“program” robots

7Sunday, December 12, 2010

What Can We Already
Do Well (?) With Machine Learning?

• Learning internal models
– dynamics models, kinematics models
– rapid learning with locally linear models
– Gaussian Processes

• Imitation learning
– learning movement primitives
– learning cost functions

• Learning task controllers
– learning with task models
– learning operational space controllers

• Reinforcement Learning and Optimal Control
– value function-based methods
– trajectory-based methods start scaling into very high dimensional systems
– policy gradients
– probabilistic reinforcement learning (reward-weighted regression, path integrals, KL-divergence)

• State Estimation
– SLAM
– “probabilistic robotics”

• Planning
– Learning with Markov Decision Processes
– Search techniques (e.g., DP, A*, RRT, PRMs, etc.)

8Sunday, December 12, 2010

What Can We Already Do?
Learning Internal Models

• Characteristics
– Incremental Learning
- large amounts of data
- continual learning
- to be approximated functions of

growing and unknown
complexity

– Fast Learning
- data efficient
- computationally efficient
- real-time

– Robust Learning
- minimal interference
- hundreds of inputs
- redundant inputs
- irrelevant inputs

• Potential Approachs
– Classical Neural Networks

- too slow, too much manual tweaking
– Mixture Models

- easy to work with
- too many local minima
- tough to select the correct number of

models
– Locally Weighted Learning

- very computationally efficient in real-
time

- problem of how to select kernel size/
shape not solved yet properly

– Kernel Methods (SVM, GP)
- excellent out-of-the box performance
- computationally very expensive and

hard to scale to many data points
(and incremental learning)

9Sunday, December 12, 2010

Learning Internal Models:
Why local linear models may still be useful

• Exploiting the structure of kinematics and
dynamics equations:
– E.g., differential kinematics equations:

- learn a local model which only uses q for the kernel:
- automatically, this local model generalizes (around cq) for all possible
- Note: a kernel-based ML methods requires to represent every

i.e., it does not easily exploit the structure of the equations

– E.g., inverse dynamics equations:
- can be learned as local linear models in form of:

- again, allowing us to exploit the structure of equations for better generalization

M q()q +C q, q() q +G q() = τ

x = J q() q
w = exp −0.5 q − cq()T D q − cq()()

q→ x
q, q→ x

τ = A q, q() q
q

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ const q()

y = βx
Tx + β0 = β T ˜ x where ˜ x = x T 1[]T

Linear Model:

w = exp −
1
2
x − c()T D x − c()⎛

⎝
⎞
⎠ where D =MTM

Weighting Kernel:

10Sunday, December 12, 2010

Learning Task Controllers:
The Bigger Picture: Learning Procedure

• First, learn differential forward kinematics in a
piecewise linear way

- Importantly, the learning algorithms determines a local region (modeled by a
kernel) where the linearization is valid

• Second, use the kernels from the forward kinematics to
learn a local inverse controller with reward weighted
regression
- This is just straight-forward weighted linear regression

• NOTE: After the forward model is known, controllers can be
learned VERY fast for all new control situations, e.g., joint-
space inv.dyn, inv. kinematics, stochastic inv. control

x = A
q
q

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
q0

11Sunday, December 12, 2010

What Can We Already Do?
Imitation Learning

• State-of-the-Art
– Many approaches exist to exploit

imitation
- motor primitive-based methods
- some work in search/planning which

exploits distributions from demonstrations

• Key Open Issues
– generalization
– on-line modulation
– libraries of re-usable primitives
– perception based on primitives
– ... otherwise, what is gained over,

e.g., spline methods?

12Sunday, December 12, 2010

 Imitation Learning:
Generalization depends on the choice of Coordinates

0 0.5 1 1.5

0

0.2

0.4

y 1

0 0.5 1 1.5

0

0.2

0.4

time [s]

y 2

0.4 0.2 0 0.2 0.4

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

y1

y 2

Demonstration facilitates
generalization

0 0.5 1 1.5
0.2

0

0.2

0.4

y 1
0 0.5 1 1.5

0.05

0

0.05

0.1

time [s]
y 2

0.4 0.2 0 0.2 0.4

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

y1

y 2

Demonstration
causes “strange”
generalization

0 0.5 1 1.5
0.2

0

0.2

0.4

y 1

0 0.5 1 1.5
0.1

0

0.1

time [s]

y 2

0.4 0.2 0 0.2 0.4

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

y1

y 2

Cylindrical
coordinates avoid
the problem

13Sunday, December 12, 2010

What Can We Already Do?
Reinforcement Learning

• State-of-the-Art
– Many approaches exist to exploit

imitation
- motor primitive-based methods
- some work in search/planning which

exploits distributions from demonstrations

• Key Open Issues
– generalization
– on-line modulation
– libraries of re-usable primitives
– perception based on primitives
– ... otherwise, what is gained over,

e.g., spline methods?

14Sunday, December 12, 2010

What Can We Already Do?
Reinforcement Learning from Trajectories

• State-of-the-art of Reinforcement Learning from
Trajectories:
- Given the cost per trajectory :

- The motor primitives with parameters θ:

– RL with Natural Gradients

– Probabilistic RL with Reward-Weighted Regression

– Trajectory-based Q-learning (fitted Q-iteration)
- an actor-critic based method based on an action-value function over trajectories

– RL with path-integrals (a probabilistic, model-based/model-free
approach derived from stochastic optimal control)

θ new = θ old +α ∂JNAC
∂θ

τ y = f y,goal,θ()

J = Eτ ri
i=0

T

∑⎧⎨
⎩

⎫
⎬
⎭

τ

θ new ∝ Rτθτ
T
∑ / Rτ

T
∑

15Sunday, December 12, 2010

Reinforcement Learning
Based on Path Integrals

• For dynamic motor primitives, a beautifully simple
“black-box” algorithm results:

1) Create K trajectories of the motor primitive for a given task with noise.
2) We can write the cost to go from every time step t of the trajectory as:

Rt = qT + ri
i= t

T

∑
3) The probability of a trajectory becomes

P ξt
k() =

exp − 1
λ
Rt
k⎛

⎝⎜
⎞
⎠⎟

exp − 1
λ
Rt

j⎛
⎝⎜

⎞
⎠⎟j=1

K

∑
4) Update the parameter θ of the motor primitive as

Δθt = P ξt
k()R

−1gk (xt)g
k (xt)

T

gk (xt)
TR−1gk (xt)k=1

K

∑ ε kt

5) Final parameter update

θ new = θ old + Δθt

Note that there are NO open
tuning parameters except for

the exploration noise

16Sunday, December 12, 2010

Example: Learning to Jumping over a Gap

0

100

200

300

400

500

600

1 10 100

Co
st

Number of Roll-Outs

This is a 12 DOF motor system,
using 50 basis functions per
primitive. Learning converges after
about 20-30 trial! Performance
improved by 15cm (0.5 body lengths)

17Sunday, December 12, 2010

Reinforcement Learning of Toy
Manipulation

Kober & Peters, 2008

18Sunday, December 12, 2010

What Can We Already Do?
Reinforcement Learning from Trajectories

• Surprisingly, reinforcement learning suddenly looks like
a topic that has fairly mature and functional algorithms
that can work on complex robots!

• Remaining problems:
– Cost function design (inverse reinforcement learning)
– Understanding the intend of observed behavior

19Sunday, December 12, 2010

What Can We Already Do?
State Estimation

• State-of-the-Art
– SLAM, “Probabilistic Robotics”, have matured to very

successful and well-working algorithms

20Sunday, December 12, 2010

What Can We Already Do?
Planning

• State-of-the-Art
– Impressive results from RRT, PRMs (see James Kuffnerʼs

talk later)
– Optimal control and reinforcement learning algorithms have

created another set of well working tools for planning

21Sunday, December 12, 2010

Topics Which Deserve Much More
Research Attention

• Learning complex motor skills from sequencing and
superimposing primitives

• Theoretically sound real-time and life-long learning
• Automatic feature extraction for task-level control
• Automatic learning of useful modularization
• Learning fine manipulation (touch, grasp)
• Learning reactive policies for stochastic and dynamic

environments
• Sensor data mining for prediction and recovery
• ...
• Learning to create complete, truly autonomous

learning and control systems

22Sunday, December 12, 2010

Sensor Data Mining

Peter Pastor Mrinal Kalakrishnan Sachin Chitta
Research conducted at Willow Garage

23Sunday, December 12, 2010

Sensor Data Mining:
An Associative Sensor Memory

Training
Data

Test Data

24Sunday, December 12, 2010

Example: Learning Locomotion
with Little Dog

25Sunday, December 12, 2010

Note: A similar video can be shown by teams of CMU, IHMC, MIT, Stanford, UPenn

26Sunday, December 12, 2010

Imagine:
If someone would

fund Machine
Learning for Robotics

with $1 Billion

27Sunday, December 12, 2010

One Result Could Be

Autonomous driver included …

28Sunday, December 12, 2010

