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Some Grand Challenges for the Next Century: 
Brains, Autonomous Robots, and Information Technology

How does the brain learn and 
control complex motor skills?
Applications: Facilitate and 

personalize learning, neuro-
prosthetics, brain machine 

interfaces, movement 
rehabilitation, etc.

Can we create an 
autonomous robot?
Applications: assistive 
robotics, hazardous 
environments, space 

exploration, etc.

What are the fundamental principles of autonomous 
learning, self-organization, self-assembly, planning?

Applications: Models, predictions, and control of systems 
from cells and nano-structures to robots to societies
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Why Learning At All?

• Couldnʼt we obtain models of
– kinematics (from CAD)
– dynamics (from CAD and system identification)
– the environment (3D vision, range finders, …)
– objects (3D models)
– etc.

and just perform planning based on these models?
• But ...

– kinematics and dynamics can change over time (wear and tear) and often we 
donʼt have accurate models to begin with (errors, unknown nonlinearities)

– the environment is dynamic, stochastic, incompletely perceivable
– new (un-modeled) situations may be encountered
– the environment is hard to model (friction, contacts, surface properties, complex 

unknown dynamics)
– the search spaces for planning become too high dimensional

such that learning seems to become mandatory to operate outside of laboratory 
environments
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What Should be Learned?

• A Library of Robust Perceptuo-Motor Skills for 
Appropriate Environments/Objects (Affordances)
– A motor skill is a series of movements that combine to produce a 

goal directed, efficient action.
- Can be formalized as learning control policies

- Thus, at the highest level, we need to learn 
• the policy π for every motor skill
• the context when to apply it and when to abort (switch) it 

- If the control policy is structured, subproblems may be learned in isolation, e.g.,
• internal models
• planning modules
• state estimators
• etc.

u(t) = π i (x,t,α )

4Sunday, December 12, 2010



Different Classes of Tasks Require 
Different Methods to Compute Policies 

• Tracking Tasks
– e.g., tracing a figure-8 on a piece of paper

• Regulator Tasks
– e.g., balance control (pole balancing, biped balancing, 

helicopter hover)
• Discrete Tasks
– e.g., reach for a cup, tennis forehand, basket ball shot

• Periodic Tasks
– e.g., legged locomotion, swimming, dancing

• Complex sequences and superposition of the above
– e.g., assembly tasks, “empty the dishwasher”, playing tennis, 

almost every daily life behavior

Level of Difficulty
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Different Learning Methods are 
Suitable for Different Tasks 

• Supervised Learning
– direct inverse model learning, forward model learning (prediction)
– “distal teacher”
– feedback error learning, adaptive learning controllers

• Reinforcement Learning
– value-function based approaches
– direct policy learning (e.g., policy gradients)

• Learning Modularizations
– primitives, schemas, basis behaviors, units of actions, macros, options
– parameterized policies

• Imitation Learning
– learning a policy from observation
– learning the task/goal intent from observation (inverse RL)
– learning an initial strategy for subsequent self-improvement

• Dimensionality Reduction, Feature Extraction
– task relevant variables (in contrast to pure data compression)

Past to Present
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Machine Learning 
is going to be the 
dominant way to 
“program” robots
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What Can We Already 
Do Well (?) With Machine Learning?

• Learning internal models
– dynamics models, kinematics models
– rapid learning with locally linear models
– Gaussian Processes

• Imitation learning
– learning movement primitives
– learning cost functions

• Learning task controllers
– learning with task models
– learning operational space controllers

• Reinforcement Learning and Optimal Control
– value function-based methods
– trajectory-based methods start scaling into very high dimensional systems
– policy gradients
– probabilistic reinforcement learning (reward-weighted regression, path integrals, KL-divergence)

• State Estimation
– SLAM
– “probabilistic robotics”

• Planning
– Learning with Markov Decision Processes
– Search techniques (e.g., DP, A*, RRT, PRMs, etc.)
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What Can We Already Do? 
Learning Internal Models

• Characteristics
– Incremental Learning
- large amounts of data
- continual learning
- to be approximated functions of 

growing and unknown 
complexity

– Fast Learning
- data efficient
- computationally efficient
- real-time

– Robust Learning
- minimal interference
- hundreds of inputs
- redundant inputs
- irrelevant inputs

• Potential Approachs
– Classical Neural Networks

- too slow, too much manual tweaking
– Mixture Models

- easy to work with
- too many local minima
- tough to select the correct number of 

models
– Locally Weighted Learning

- very computationally efficient in real-
time

- problem of how to select kernel size/
shape not solved yet properly

– Kernel Methods (SVM, GP)
- excellent out-of-the box performance
- computationally very expensive and 

hard to scale to many data points 
(and incremental learning)
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Learning Internal Models:
Why local linear models may still be useful

• Exploiting the structure of kinematics and 
dynamics equations:
– E.g., differential kinematics equations:

- learn a local model which only uses q for the kernel:
- automatically, this local model generalizes (around cq) for all possible
- Note: a kernel-based ML methods requires to represent every

i.e., it does not easily exploit the structure of the equations 

– E.g., inverse dynamics equations:
- can be learned as local linear models in form of:

- again, allowing us to exploit the structure of equations for better generalization

M q( )q +C q, q( ) q +G q( ) = τ

x = J q( ) q
w = exp −0.5 q − cq( )T D q − cq( )( )

q→ x
q, q→ x

τ = A q, q( ) q
q

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ const q( )

y = βx
Tx + β0 = β T ˜ x where ˜ x = x T 1[ ]T

Linear Model:

w = exp −
1
2
x − c( )T D x − c( )⎛ 

⎝ 
⎞ 
⎠ where D =MTM

Weighting Kernel:
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Learning Task Controllers: 
The Bigger Picture: Learning Procedure 

• First, learn differential forward kinematics in a 
piecewise linear way

- Importantly, the learning algorithms determines a local region (modeled by a 
kernel) where the linearization is valid

• Second, use the kernels from the forward kinematics to 
learn a local inverse controller with reward weighted 
regression
- This is just straight-forward weighted linear regression

• NOTE: After the forward model is known, controllers can be 
learned VERY fast for all new control situations, e.g., joint-
space inv.dyn, inv. kinematics, stochastic inv. control

 

x = A
q
q

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
q0
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What Can We Already Do? 
Imitation Learning

• State-of-the-Art
– Many approaches exist to exploit 

imitation
- motor primitive-based methods
- some work in search/planning which 

exploits distributions from demonstrations

• Key Open Issues
– generalization
– on-line modulation
– libraries of re-usable primitives
– perception based on primitives
– ... otherwise, what is gained over, 

e.g., spline methods?

12Sunday, December 12, 2010



 Imitation Learning:
Generalization  depends on the choice of Coordinates
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What Can We Already Do? 
Reinforcement Learning

• State-of-the-Art
– Many approaches exist to exploit 

imitation
- motor primitive-based methods
- some work in search/planning which 

exploits distributions from demonstrations

• Key Open Issues
– generalization
– on-line modulation
– libraries of re-usable primitives
– perception based on primitives
– ... otherwise, what is gained over, 

e.g., spline methods?
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What Can We Already Do? 
Reinforcement Learning from Trajectories

• State-of-the-art of Reinforcement Learning from 
Trajectories:
- Given the cost per trajectory    :  

- The motor primitives with parameters θ:

– RL with Natural Gradients

– Probabilistic RL with Reward-Weighted Regression

– Trajectory-based Q-learning (fitted Q-iteration)
- an actor-critic based method based on an action-value function over trajectories

– RL with path-integrals (a probabilistic, model-based/model-free 
approach derived from stochastic optimal control)

θ new = θ old +α ∂JNAC
∂θ

τ y = f y,goal,θ( )

J = Eτ ri
i=0

T

∑⎧⎨
⎩

⎫
⎬
⎭

τ

θ new ∝ Rτθτ
T
∑ / Rτ

T
∑

15Sunday, December 12, 2010



Reinforcement Learning 
Based on Path Integrals

• For dynamic motor primitives, a beautifully simple 
“black-box” algorithm results:

1) Create K trajectories of the motor primitive for a given task with noise.
2) We can write the cost to go from every time step t of the trajectory as:

Rt = qT + ri
i= t

T

∑
3) The probability of a trajectory becomes

P ξt
k( ) =

exp − 1
λ
Rt
k⎛

⎝⎜
⎞
⎠⎟

exp − 1
λ
Rt

j⎛
⎝⎜

⎞
⎠⎟j=1

K

∑
4) Update the parameter θ  of the motor primitive as

Δθt = P ξt
k( )R

−1gk (xt )g
k (xt )

T

gk (xt )
TR−1gk (xt )k=1

K

∑ ε kt

5) Final parameter update

θ new = θ old + Δθt

Note that there are NO open
tuning parameters except for

the exploration noise
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Example: Learning to Jumping over a Gap
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This is a 12 DOF motor system,
using 50 basis functions per
primitive. Learning converges after
about 20-30 trial! Performance 
improved by 15cm (0.5 body lengths)
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Reinforcement Learning of Toy 
Manipulation

Kober & Peters, 2008
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What Can We Already Do? 
Reinforcement Learning from Trajectories

• Surprisingly, reinforcement learning suddenly looks like 
a topic that has fairly mature and functional algorithms 
that can work on complex robots!

• Remaining problems:
– Cost function design (inverse reinforcement learning)
– Understanding the intend of observed behavior
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What Can We Already Do? 
State Estimation

• State-of-the-Art
– SLAM, “Probabilistic Robotics”, have matured to very 

successful and well-working algorithms

20Sunday, December 12, 2010



What Can We Already Do? 
Planning

• State-of-the-Art
– Impressive results from RRT, PRMs (see James Kuffnerʼs 

talk later)
– Optimal control and reinforcement learning algorithms have 

created another set of well working tools for planning

21Sunday, December 12, 2010



Topics Which Deserve Much More 
Research Attention

• Learning complex motor skills from sequencing and 
superimposing primitives

• Theoretically sound real-time and life-long learning 
• Automatic feature extraction for task-level control
• Automatic learning of useful modularization
• Learning fine manipulation (touch, grasp)
• Learning reactive policies for stochastic and dynamic 

environments
• Sensor data mining for prediction and recovery
• ...
• Learning to create complete, truly autonomous 

learning and control systems
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Sensor Data Mining

Peter Pastor   Mrinal Kalakrishnan   Sachin Chitta  
Research conducted at Willow Garage
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Sensor Data Mining: 
An Associative Sensor Memory

Training 
Data

Test Data
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Example: Learning Locomotion 
with Little Dog
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Note: A similar video can be shown by teams of CMU, IHMC, MIT, Stanford, UPenn
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Imagine:
If someone would 

fund Machine 
Learning for Robotics 

with $1 Billion
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One Result Could Be ....

Autonomous driver included …

28Sunday, December 12, 2010


