

Design and Control of Compliant Humanoids

Alin Albu-Schäffer

DLR – German Aerospace Center Institute of Robotics and Mechatronics

Torque Controlled Light-weight Robots

Torque sensing in each joint Mature technology for experimental platforms

First Applications of the Technology in Automotive Industry

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Gearbox Assembly at Daimler

Special Gripper from earlier solutions

- Production started 2009 24/7 Application with the LWR
- More than 50000 gearbox units in Mercedes cars
- Production without fences. Humans interact with the robot

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Modularity and light-weight allows the construction of complex kinematics using the arm joints

DLR crawler

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR walker

[Ott & al. Humanoids 2010, 2011]

Mechatronic Joint Design

DLR

The DLR-HIT-hands on the way to commercialization

Hand I with four fingers, 12 actuators

- tooth belt drives
- 1kg finger tip force
- torque control

Hand II with five fingers ,15 actuators

DEXHAND – Europe's first Robonaut hand

25 N test

- → Less than 3.3 kg
- → Finger length 93 mm (Thumb 100 mm),
- → DEXHAND length 340 mm
- → 25 N Fingertip force (Thumb 40 N) –

streched out

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

New light-weight robot with f/t sensing in the joints and at extremities

- Higher power and speed

Cartesian Impedance Control

Unified approach for torque, position and impedance control on Cartesian and joint level

$$\tau_F \rightarrow (1+K_T)^{-1} \tau_F \qquad B \rightarrow B_{\theta} = (1+K_T)^{-1} B$$

Passivity → Robustness in contact with the environment

Deutsches Zentru

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft [Albu-Schäffer & al, IJRR 2007]

DLR Hand II – Impedance Control

- → Joint impedance Control
- → Cartesian Impedance Control
- ✓ Object Impedance Control

[Wimböck al. IJRR 2010]

Impedance Control for Two Handed Manipulation

Human-Robot-Interaction

Compliant Control of the entire Robot

Rollin' Justin

53 active dof150 kg

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Current Research Plattform based on Variable Compliance Actuation (VIA)

Anthropomorphic Hand-Arm-System

- ✓ Size, force and dynamics of a human arm/hand
- ✓ Variable stiffness
- ✓ 52 motors, 111 position sensors

A Hand-Arm System for Space Robot Assistrance

Extension of the passivity based control approaches to the VIA robots:

- ✓ Variable, nonlinear stiffness

The new integrated hand-arm-system (with variable impedance actuation VIA)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Grebenstein & al. Humanoids 2010]

VIA – Variable Impedance Actuators 1 Antagonistic Actuator (fingers)

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

VIA – Variable Impedance Actuators 2

Bidirectional Antagonistic Actuator (underarm rotation and wrist)

- 2 equally sized motors
- both motors push and pull (bidirectional)

VIA – Variable Impedance Actuators 3 Adjustable Stiffness Actuator (upper arm)

- one big motor1 moves the joint
- one small motor2 changes joint stiffness
- without motor2 we have a serial elastic joint

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft **Moving Joint Output**

Joint Data Sheet: DLR VS-Joint

Actuator Type	Variable Stiffness
Maximum Joint Torque (repeatable, evaluated by measurement)	± 180 Nm
Min./Max. Stiffness (no external load)	0 / 315 Nm/rad
Max. Storable Energy	16.8 J
Max. Equilibrium Velocity	217°/s
Nominal Power (not max./peak!)	270 + 50 = 320 W
Min. Stiffness Adjusting Time (from 3% to 97% stiffness)	0.2 s
Torque Hysteresis at Max. Torque	7.3%
Weight (w/wo Motors)	1.4 / ~ 2.0 kg
Size (w/wo Motors)	Ø97x106 / ~ Ø97x166 mm
Max. Deflection Range (min./max Stiff.)	± 14° / ± 14°

c: Radius of Cam Disk

VIACTORS

Joint Data Sheet: DLR QA-Joint

Actuator Type	Quasi Antagonistic
Maximum Joint Torque (repeatable, evaluated by measurement)	± 40 Nm
Min./Max. Stiffness (no external load)	20 / 550 Nm/rad
Max. Storable Energy	2.7 J
Max. Equilibrium Velocity	217°/s
Nominal Power (not max./peak!)	270 + 50 = 320 W
Min. Stiffness Adjusting Time (from 3% to 97% stiffness)	0.15 s
Torque Hysteresis at Max. Torque	+/-12.5%
Weight (w/wo Motors)	1.4 / ~ 2.0 kg
Size (w/wo Motors)	Ø90x100 / ~ Ø90x160 mm
Max. Deflection Range (min./max Stiff.)	± 15° / ± 3°

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Stiffness over ext. torque, preset + / - 3° to +/-15°

Validation of Arm Robustness

Control of VIA Joints

- Ensuring the achievement of the desired link position with motor position based control.
- Providing the desired stiffness property.

General Model

For all considered actuator types so far, following model structure holds

$$oldsymbol{M}(oldsymbol{x})\ddot{oldsymbol{x}} + oldsymbol{c}(oldsymbol{x},\dot{oldsymbol{x}}) + rac{\partial V(x)}{\partial x} = \begin{bmatrix} au_1 \\ au_2 \\ au_{ ext{ext}} \end{bmatrix}$$
 External disturbance torque

Main properties:

- under-actuation: less control inputs (τ_1, τ_2) than dimension of configuration space

- positive definiteness of V(x)

We propose this generic model for controller design of VIA joints

Flexible joint model is a particular case

[Albu-Schäffer at ICRA 2010]

Decoupling in Modal Coordinates

back to link coordinates

$$\begin{cases} K_P = QK_{PQ}Q^T \\ K_D = Q K_{DQ}Q^T \\ K_T = Q K_{TQ}Q^T \\ K_S = Q K_{SQ}Q^T \end{cases}$$

symmetric, nondiagonal p.d

state feedback controller in link coordinates.

$$u = K_P \tilde{\theta} - K_D \dot{\theta} - K_T K^{-1} \tau - K_S K^{-1} \dot{\tau}$$

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft [Petit at ICRA 2010]

Experimental Validation

Point to Point trajectory

Vibration Damping OFF

Vibration ON

Experimental Validation

Cartesian Impedance Control

Implementation of a simple Cartesian impedance $\tau_m = g(q) - \frac{\partial V(q)}{\partial q} - D(q)\dot{q}$

Potential: $V(q) = V_S(H(q), H_d, \kappa_d)$

Damping design:

Double diagonalization of the inertia matrix and the Hessian of the potential function.

Extension for variable stiffness joints

Combine active and passive impedance

$$K_s^{-1} = K_a^{-1} + K_a^{-1}$$

[Petit at IROS11]

H

H(q)

 $F_{ext} \in \Re^6$

Robot

Passive stiffness

(diagonal)

Motors

Active stiffness

(coupled)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Passive Joint Elasticities & Cartesian Stiffness

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Combining Active & Passive Impedances

in der Helmholtz-Gemeinschaft

1. Step: Passive Compliance Optimization

→ achieve Cartesian compliance as good as possible by passive compliance

 → least-squares problem

$$\min_{\mathbf{c}_{Jp}} \|\mathbf{A} \cdot \mathbf{c}_{Jp} - \mathbf{b}\|_2^G$$

subject to $\mathbf{c}_{Jp}^{\min} < \mathbf{c}_{Jp} < \mathbf{c}_{Jp}^{\max}$

2. Step: Active Compliance Optimization

✓ remove residual by active compliance

Results

Performance Validation

Optimal control for maximizing end velocity.

- Analytical solutions for 1dof, linear case
- Extension to nonlinear case with dynamic constraints

Constant vs. Variable Stiffness

in der Helmholtz-Gemeinschaft

Performance Validation for multi dof

ball throwing

Evaluation of human-inspired throwing motion generation

Performance Demonstration with the Hand

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Chalon & al. IROS 2011

Performance Validation: Kicking Experiments

Experimental Results

	Stiff Joint	VS-Joint
Speed	3.06 m/s	6.35 m/s
Kicking range	1.6 m	4.05 m
Impact joint torque	85 Nm	10 Nm

WP2- Robotics of Biological Neuro-mechanical Control

[Ganesh & al., TRO 2011]

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

The DLR Hand-Arm System

