

Humanoids 2011 Workshop "New Bodies for Cognitive Humanoids" Bled, Slovenia, 26. October 2011

Towards High Performance 24/7 Humanoids

Tamim Asfour Humanoids and Intelligence Systems Lab (Prof. Dillmann)

INSTITUTE FOR ANTHROPOMATICS, DEPARTMENT OF INFORMATICS

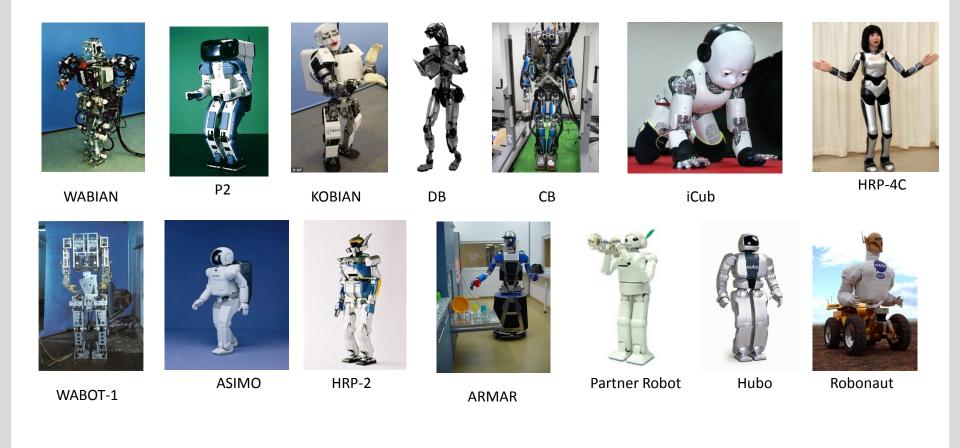
http://his.anthropomatik.kit.edu

http://his.anthropomatik.kit.edu/english/65.php

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

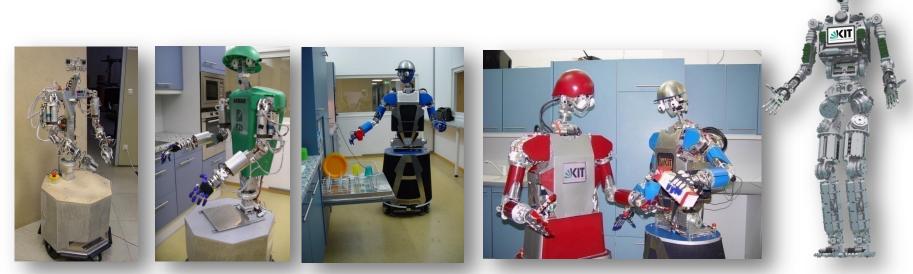
Building Humanoids


Building Humanoids = Building Human-Centered Technologies

- Assistants/companions for people in different ages, situations, activities and environments in order to improve the quality of life
- Key technologies for future robotic systems
- Experimental platforms to study theories about humans from other disciplines

Humanoid robot examples

Major goals in humanoid research



Advanced human-like mechatronics systems

Tools to study humans

Humanoid Robots @ KIT

ARMAR, 2000

ARMAR-II, 2002

ARMAR-IIIa, 2006

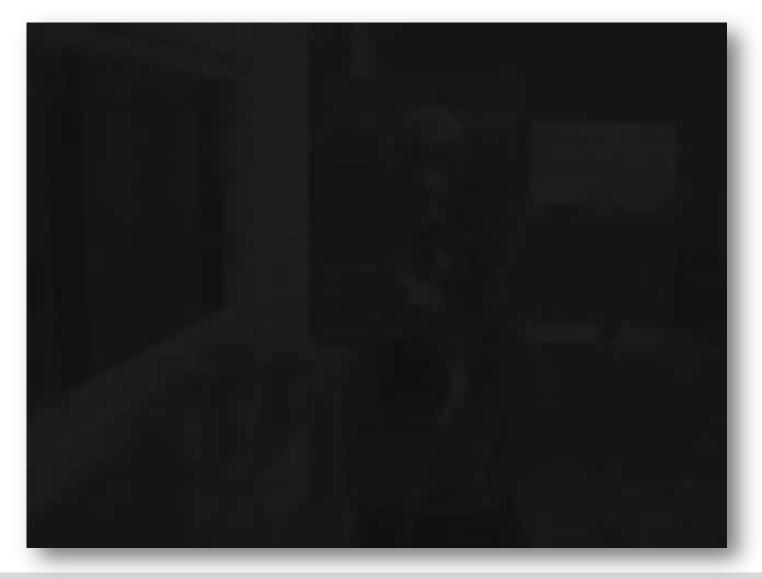
ARMAR-IIIb, 2008

ARMAR-IV, 2011

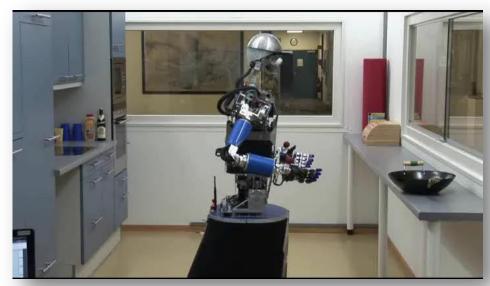
- Collaborative Research Center 588: Humanoid Robots Learning and Cooperating Multimodal Robots (SFB 588)
 - Funded by the German Research Foundation (DFG: Deutsche Forschungsgemeinschaft)
 - 2001 2012
 - http://www.sfb588.uni-karlsruhe.de/

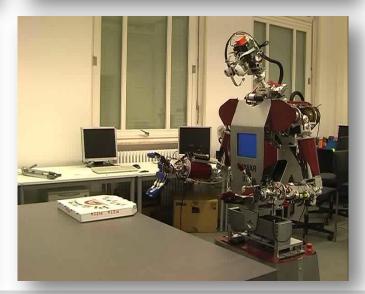
Three key questions

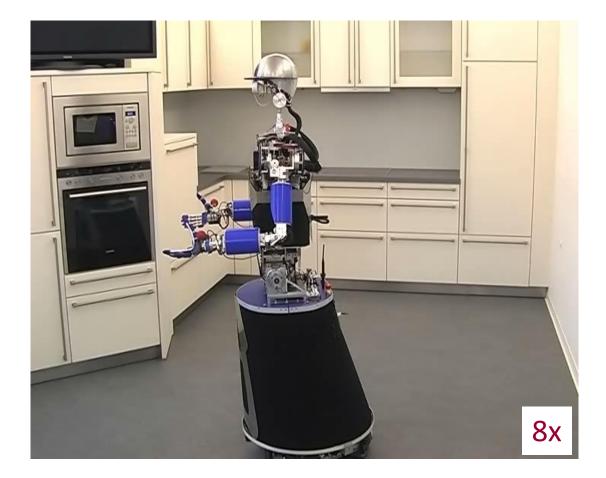
- Grasping and manipulation in human-centered and open-ended environments
- Learning through observation of humans and imitation of human actions
- Interaction and natural communication


DFG

© SFB 588, Karlsruhe


ARMAR in the **Robo-KITchen**


The ARMARs in the Robo-KITchen



ARMAR in the **Robo-KITchen**

Humanoids@KIT

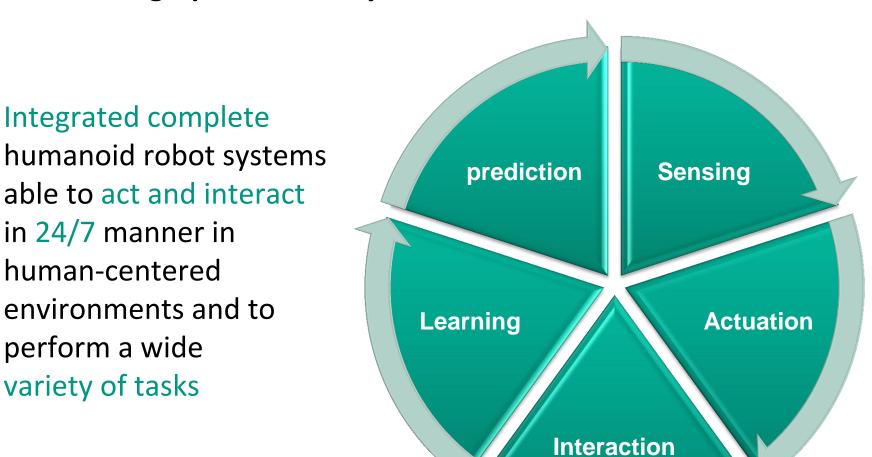
Current systems are limited in their capabilities

Speed

- Open the dishwasher
 - ARMAR ~ 2 minutes
 - Chiara (4 years old) ~ 4 sec
- Energy
 - 2 car battery → 2~3 hours autonomous operation
- 24/7
 - Interaction
 - Learning
 - ·...
- Adaptivity
 - To new kitchens

Karlsruhe Institute of Technology

The "X"


- It is NOT the "X" in Self-X
- It is NOT the "X" in Co-X
- It is NOT the state variable in dynamical systems
- It is the value by which we have to speed up robot movies to make robots behave/move in a human-like way.
 - Almost > 1

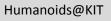
Some counterexamples

Slowdown instead of speedup videos ③ (X < 1)</p>

... we need high-performant systems in

24/7 high-performance humanoid robot that is trusted by all citizens in daily life

High-performance humanoid robot that can play tennis


24/7 high-performance humanoid robot: challenges

- Understanding and interpretation
 - Scenes, contexts and situations
- Object categorization
 - Daily objects
- Grasping any object
 - Pin, book, ..., beer box
- Navigation in every environment
 - Home, street, super market

24/7 high-performance humanoid robot: challenges

- Human-Robot interaction
 - Multimodal interaction
 - **Physical interaction**
 - Natural communication
 - Action and activity and intention recognition
 - Human tracking, gesture detection, face detection and identification, emotion recognition
- Social interaction
 - Humor, trust, privacy
- Personalization
 - Adapt to human's needs and habits

24/7 humanoid robot: What to measure?

Energy consumption

Similar to other household appliances (oven, fridge, dishwasher, ...)

Program complexity

FLOPs, Memory requirements

Performance

- 2015: set/clean the table, load the dish washer or the washing machine, prepare food
- 2030: Clean the apartment, go shopping (in super market, shopping center, Italian shop, ...)
- **2049:** Similar to human caregiver in performance and social interaction

Price:

Cheap car

Humanoid robot that can play tennis: challenges

Humanoid robot that can play tennis: challenges

It is not about Tennis!

- Understanding the body dynamics
- Body balancing and motor coordination
- Safe falling and recovery
- Real-time prediction:
 - Reaction based only on vision would be too late
 - "Sense Plan Act" would not work
 - Instead: "Predict Act Sense"

Humanoid robot that can play tennis: challenges

It is not about Tennis!

- Multisensory integration (vision, vestibular, haptics, ..)
- Learning
 - of other's behavior and adaptation of own behavior based on past experience
 - to predict and adapt from little experience and few examples
- High speed perception and high speed control

Tennis: What to measure?

Energy consumption

Humanoid robot should be able to play a game with the energy equivalent of a "Maultaschen" dish

Program complexity

FLOPs, Memory requirements

Performance

- 2020: Perform basic tennis playing
- 2030: Steadily win against number 500 of the ATP ranking
- 2049: Steadily win against number one of the ATP ranking

Price:

Cheap car

Applications/Perspectives

- 24/7 systems with human-like performance
 - Assistance and companions in daily life
- Help in man-made and natural disasters
 - New generation of high-performance humanoids for telepresence with varying level of autonomy
- "Tennis" (it is not about tennis)
 Understanding the body dynamics
- High performance wearable robots
 - Compensation of physical limitations

ARMAR-X

Humanoid robots with dual function

Autonomous robot

Wearable Humanoid "Body suit"

NEW BODIES FOR HUMANOIDS

New Bodies for Humanoids

Body, mind and brain are inseparably intertwined

Morphological Computation (Rolf Pfeifer)

- Integrating morphology and control ("morphological computation"); re-thinking control
- Materials for sensing and actuation
 - Novel ways for actuation
 - skin (deformable, high-density/ sensitivity, parallel, robust, water proof, re-generating)

Missing technologies

Hardware

- Actuation
- Materials
- Sensing (skin)
- Massive connections
- Computer architectures
- Software
 - Simulators
 - Middleware, standards
 - New computing paradigms

Missing methodologies

Design principles and quantitative models for the development of systems that

- explore their own sensorimotor primitives and body morphology
- explore the environments and the effective interaction with it
- predict the body dynamics and the physics of the world

How body morphology allows to cope with

- morphological change arising through the interaction with the environment
- tolerance to uncertain variability in performance of robot components
- How reconfigurability and self-reconfigurability, redundancy, robustness and flexibility can be implemented

Thanks to ...

Markus Przybylski, Manfred Kröhnert, Sebastian Schulz, Pedram Azad, Ioana Gheta, Christian Böge, Tamim Asfour, Kai Welke, David González, Nikolaus Vahrenkamp, Rüdiger Dillmann, Ömer Terlemez, Julian Schill, Martin Do, Paul Holz (not shown), Stefan Ulbrich (not shown)

Thank to ...

German Research Foundation (DFG)

SFB 588 www.sfb588.uni-karlsruhe.de

Deutsche Forschungsgemeinschaft DFG

European Commission

- Xperience www.xperience.org
- PACO-PLUS www.paco-plus.org
- GRASP www.grasp-project.eu

Thanks for your attention

