

Advances in the Design of the iCub Humanoid Robot: Force **Control and Tactile Sensing**

> Bled, Slovenia October 26th, 2011

Giorgio Metta, Ugo Pattacini, Andrea Del Prete, Marco Randazzo, Alberto Parmiggiani, Serena Ivaldi, Matteo Fumagalli, Marco Maggiali, Lorenzo Natale, Francesco Nori, Giulio Sandini

Cognitive Humanoids Laboratory Robotics, Brain and Cognitive Sciences dept. the Italian Institute of Technology

what are we looking for?

- the focus of our research is in the implementation of biologically sound models of cognition in robots of humanoid shape
- this has the two-fold aim of:
 - furthering our understanding of brain functions
 - realizing robot controllers that can learn and adapt from their mistakes

we set up to reach our goals by...

✓ designing a humanoid robot platform, namely the iCub

✓ making it the platform of choice for researchers in artificial cognitive systems

 ✓ studying cognition from a developmental perspective (neuroscience)

why is the iCub so special (for us)?

- hands: we started the design from the hands
 - 5 fingers, 9 degrees of freedom, 19 joints

- sensors: human-like, e.g. no lasers
 - cameras, microphones, gyros, encoders, force, tactile...

- electronics: flexibility for research
 - custom electronics, small, programmable (DSP)

- reproducible platform: community designed
 - reproducible & maintainable yet evolvable platform

joint torque sensors

pros: direct feedback loop cons: requires mechanical re-design

six-axis F/T sensors

pros: scalability, full perception cons: computational delays

iCub sensorization

converter

iCub 2.0

new mechanics

compliant actuators

force/torque measurements

iCub sensorization

new iCub arm:

 integrated joint torque sensor on majors joints: shouder (3 DoF) + elbow (1 DoF)

semiconductor strain gauges (SSGs)

iCub Hardware: elbow joint

MOTOR 3 JOINT 3 ELBOW Elbow (1DOF):

• 2 SSGs configured as an half Wheatstone bridge.

• Calibration:

$$\tau_{elbow} = c_1 \cdot (s_1 + o_1)$$

iCub Hardware: shoulder roll

Shoulder (3 DOF):

Shoulder Roll:

• 4 SSGs configured as two half Wheatstone bridges.

• Calibration:

$$\tau_{roll} = c_2 \cdot (s_2 + o_2) + c_3 \cdot (s_3 + o_3)$$

iCub Hardware: shoulder pitch

Shoulder (3 DOF):

Shoulder Pitch:

• 4 SSGs mounted directly on an hollow motor shaft.

.Coupling with the shoulder roll:

$$\tau_m = T^{-T} \tau_j \qquad T^{-T} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1/r & -1/r \\ 0 & 0 & 1/r \end{bmatrix}$$

• Calibration:

$$\tau_{pitch} = c_4 \cdot (s_4 + o_4) + c_5 \cdot (s_5 + o_5) - \tau_{roll}$$

iCub Hardware: shoulder yaw

Shoulder (3 DOF):

Shoulder Yaw:

- No additional joint torque sensors required.
- The joint torque is obtained through the direct measurements of the six axis F/T sensor.

• No calibration is required (the F/T sensor is already calibrated):

$$\tau_{yaw} = F_y \cdot d + T_z$$

joint torque sensors

ite experiments and model validation

static configuration:

an additional six axis F/T sensor is placed at the end effector to measures the external wrenches ${\rm w}_{\rm e}$

in this experiment we consider the following quantities:

- joint torques measured by the joint torque sensors: t_i
- joint torques computed from the arm F/T sensor: t_{FT}
- joint torques estimated thought the additional F/T sensor located at the end effector: $t_e\!=\!J^Tw_e$
- joint torques predicted by the arm model (no external forces): t_m

additional F/T sensor the and offector	r at
the end-effector	Ε (σ (Ε (σ (

	Joint 0	Joint 1	Joint 2	Joint 3	
Ε (τ _j -τ _{ft})	0.127 Nm	-0.049 Nm	-0.002 Nm	-0.032 Nm	
σ (τ _j -τ _{ft})	0.186 Nm	0.131 Nm	0.013 Nm	0.042 Nm	
Ε (τ _j -(τ _m +τ _e))	0.075 Nm	-0.098 Nm	-0.006 Nm	0.006 Nm	
σ (τ _j -(τ _m +τ _e))	0.191 Nm	0.173 Nm	0.020 Nm	0.032 Nm	

ite experiments and model validation

representation of the external wrenches:

the arm FT sensor allows to retrieve also the external wrench at the end effector.

- w_e : the external wrenches measured by the additional F/T sensor at the end-effector
- w_{FT} : the external wrenches computed using the arm F/T sensor

remarks:

- it is not possible to estimate the externally applied wrenches $w_e \in R^6$ using the only measurements of joint torques $t_i \in R^4$
- joint torques are effected by the null space of the Jacobian

	F ₁ (N)	F ₂ (N)	F ₃ (N)	μ ₁ (Nm)	μ ₂ (Nm)	µ₃(Nm)
E(w _e -w _{FT})	0.181	-0.465	-0.154	-0.079	-0.024	-0.024
σ (w _e -w _{FT})	0.384	0.426	0.469	0.149	0.048	0.059

skin

fingertips

- capacitive pressure sensor with 12 sensitive zones
- 14.5 mm long and 13 mm wide, sized for iCub
- embedded electronics: twelve 16 bit measurements of capacitance
 - either all 12 taxels independently at 50 Hz or an average of the 12 taxels at about 500 Hz

touch

learning new actions

some philosophy to conclude why open (source) platforms?

• repeatable experiments

benchmarking

quality

this also resonates with industry-grade R&D in robotics

sponsors

- EU Commission projects:
 - RobotCub, grant FP6-004370, http://www.robotcub.org
 - CHRIS, grant FP7-215805, http://www.chrisfp7.eu
 - ITALK, grant FP7-214668, http://italkproject.org
 - Poeticon, grant FP7-215843 http://www.poeticon.eu
 - Robotdoc, grant FP7-ITN-235065 http://www.robotdoc.org
 - Roboskin, grant FP7-231500 http://www.roboskin.eu
 - Xperience, grant FP7-270273 http://www.xperience.org
 - EFAA, grant FP7-270490 http://efaa.upf.edu/
- More information: http://www.iCub.org

