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My research’s motivation:
Flexible and powerful motions like humans

 Human body structures :
— a spine structure, multi-DOFs, driven by redundant muscles
— They are important in natural fullbody motions in sports.
— For example, pitching motion of a baseball player
e Our interest:
— How to develop more humanlike humanoids?
— How to manage such a complicated body?

Flexible and powerful motion!



Our design approach:
tendon-driven musculoskeletal humanoids

Joint structure can be simplified

Passive bone structure and tendon -> more joints(DOFs), more sensor,
modules more actuator!
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Small robots with spines
(1999, 2000, Mizuuchi et.al)

e Prototype spined and tendon-driven robot

Spine robot “Bebe” Spine 4 legged robot “SQ43” Spine small humanoid “Cla



Spine robot BeBe

* Imitation of human detail spine =

— Using medical spine model with
24 vartebrae

— Using 36 pneumatic actuators

« Control only valve ON/OFF
switching

— CCD camera on head

* As simple platform for vision
based motion learning with

redundant DOFs and many
actuators

Human spine structure (24 vartebrae)


http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Gray_111_-_Vertebral_column-coloured.png

4 legged robot SQ43 with flexible spine

e Focus on spine’s flexibility

— Evaluation of influence to walking performance

— 2 actuators for bending spine
— Passive joint to twist its spine

— No stiffness adjustment actuator (stiffness is constant)
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Small spine robot Cla

Cla’s spine structure
— 5 spherical joint by 8 tendons
— Each tendon: force control based

on sensor
 spine stiffness control
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Lifesized tendon-driven humanoid
(2001~)

 More complicated, more humanlike body structure
— how to design humanlike structure
— how to contain many components in body

Kenta(2001~) Kotaro(2005~) Kojiro(2008~) Kenzoh(2011~)

eHeight : 123cm
*Weight:  19kg
«Joint DOFs: 73
*Muscle Num:94

*Muscle Nu




Kenta: fullbody tendon-driven humanoid with
complex spine structure

(2001 ~)
 Complex spine structure

— 10 spherical joints by 40 actuators

» winding wire by rotating pulley
— All tendon actuators has tension sensors

*Height : 123cm
Weight: 19kg
«Joint DOFs: 73
Muscle Num:94




Kenta’s spine structure

S curve like human spine

— Adding flexibility in vertical direction of trunk body
Costal bones

— For attachment points for tendons

— For large moment arm to generate enough torque
Humanlike shape of vartebra

Humanlike movable range of spine
— bending: £90 degree




Kotaro: Reinforceable tulilbody musculoskeletal humanolas

(2005~)

1. Totally more humanlike bone structure
— spine, collarbone, bladebone, spherical hip joint

Col larbone

Bladebone

*Height :  130cm
*Weight: 20kg
«Joint DOFs: 63

*Muscle Num: 88-100




Kotaro: RrReinforceable tulibody musculoskeletal humanolds

(2005~)

1. Totally more humanlike bone structure
2. Adding more sensors

— Tension sensor, vision sensor + Tactile sensor, IMU sensor

*Height :  130cm
*Weight: 20kg
«Joint DOFs: 63
*Muscle Num: 88-100
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Kotaro: Reintorceable tullbody musculoskeletal hnumanolias

(2005~)

Totally more humanlike bone structure
Adding more sensors
Improvement of maintenance

— Individually remove/add actuator unit
-> Reinforceable tendons according to task
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DC Motor

*Height :  130cm
*Weight: 20kg
«Joint DOFs: 63
*Muscle Num: 88-100




Kotaro: Reintorceable tullbody musculoskeletal hnumanolias

(2005~)

Totally more humanlike bone structure
Adding more sensors

Improvement of maintenance

More familiar total design

Wb

. for exhibition in Aichi Expo 2005

*Height :  130cm
*Weight: 20kg
«Joint DOFs: 63
*Muscle Num: 88-100




Kojiro: Powerful musculoskeletal humanoid 2008~

 Kenta, Kotaro: Too weak and fragile to do fullbody motion
— we always have to repair robots before experiments
o Characteristics

1. Same size and more powerful
* Improvement of actuator system (4.5WDC motor=40WBrushless motor)
* Increase of number of muscles (32muscles -> 44 muscles in lowerbody)

*Height :  135cm
*Weight: 45kg
«Joint DOFs: 58
*Muscle Num: 109

e |n the new humanoid
— 40W AC motor

— Cont. max tension 28[kgf]

— Cont. max velocity
O5Imm

(Kotaro)
— 4.5W DC motor

— Cont. max tension 5

case ,
) & motor
%"}

Motor driver
pul ley

( for 4 motors




Demonstrations of fullbody motion
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Characteristics
1. Same size and more powerful
2.
. Reduction of impact shock peak

Kojiro: Powerful musculoskeletal humanoid 2008~

Adding mechanical stiffness adjustable tendon units to wrist

| pulleyx3

0 20 40 60 80 100 120 140

Wire Tension [N]

[ load cell

Low stiffness High stiffness

Pulley \O/ ‘ -Height :  135cm

Wire

Spring _ k

_\_\_\_\_\_‘_‘—‘—\—\.

*Weight: 45kg
k «Joint DOFs: 58
*Muscle Num: 109




Demonstrations of using wrist joint flexibility

Nailing motion

Drumming motion

Thanks to nonlinear spring mechanism

« Absorption of impact force

e High speed motion using spring
extension



Kenzoh: powerful and adaptive musculoskeletal humanoid 2011~

1. More powerful
— Kaojiro: 40W motor -> Kenzoh: 90W motor
— Kaojiro: 65 motors(upper body) -> Kenzoh: 80 motors
2. Mechanical nonlinear spring units are embedded in all muscles

— Kaojiro: only wrist part
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Development of new musculoskeletal tendon-driven arm

1. High joint torque: using high geared motor

2. Joint softness:  using nonfinear spring unit _
3. High joint speed: using winding pulley with alecizomanr
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What Is difficult to control our robots’P

1. Control space is too large
— Joint DOFs over 60, Actuator over 100, Sensor over 120

2. Difficulty to build precise computational robot model for control BT 8
— Interference between tendons and bones
— Collision, friction of tendon

3. Uncertainty of robot body
— Elongation of tendons
— Drift of sensors day by day( hour by hour)
— Effect of friction of tendons, spherical joints Interference with tendon

and bones
Our approach @

— Motion control based on simple sensor feedback like reflex without detail robot model

— Acquirement of body model for control by learning process in the real world/and real
robot

Geometric model Real o;/ |
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Swing motion demonstration

Example of motion control based on simple sensor feedback

— Acquiring spine reflex movement parameters based on visual motion information
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Searching parameters by trial and error

In this case

— Using simulation environment because Kenta is too fragile!
* Only joint space simulation, not tendon space simulation

Actually,

— In the real world, the parameter from simulation does not work
— Experimenter must modify the parameter for real robot

3D view

vision view

vision view

— e ——

Optical flow




Learning parameters by trial and error in the real world

Trial in the real world
Evaluation of robot motion from sensor value
Modify motion parameters
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Selecting parameters is important for convergence in the real world
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Pedaling learning in the real world
Acquiring tension pattern of legs 16 muscles in pedaling

based on pedaling pressure value Pedaling on ground

Inltlal motlon trajectory is glven
— }j 1--7 1




Other demonstration by learning
parameters in real world

* One step using spine motion
— Parameters: spine goal angle and time step
— Evaluation: swing of ZMP, gyro
* Rotation of crank
— Parameters: muscle length reference of the arm during one cycle
— Evaluation: Internal force measured by muscle tensions value
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Summary

Development of musculoskeletal humanoids step by step

— Redesign of bone/joint structure

Bone by nylon Rapid prototype(SLS}

Covers by Rapid prototype(SLA)

s, materials

Compresion g
Bone by metal Rapid prototype(SLS)

Spherical Joint-Angle Sensor

Sphear joint
{PTFE)

using Tmryr Mobilephone Camera

Silicone rubber an

joint-sphere  color filter

|

sUS

calibration spot ‘ é
PTF

\ op‘llcul flbre
Smooth spherical joint by PTFE




Summary

Development of musculoskeletal humanoids step by step
— Redesign of bone/joint structures, materials
— Developing new sensors, powerful/small actuators, boards

= As frontier of developing new technology
* More humanlike: more compact, lighter, stronger, more efficient, ...

§4.5W DC x 2
2000 2003 2005 2008 2010




Summary

 Development of musculoskeletal humanoids step by step
— Redesign of bone/joint structures, materials
— Developing new sensors, powerful/small actuators, boards

= As frontier of developing new technology
* More humanlike: more compact, lighter, stronger, more efficient, ...

o Control of musculoskeletal humanoids by trial and error in the
real world

— Acquired motion is not optimized, however, it works recently.
* Thanks to improvement of musculoskeletal humanoid body.

— Problems

« Every time, parameter re-learning is needed
— How to re-use any learned information?
» Probabilistic information
» Based on relative information not absolute one
» At each task, the parameters are selected by experimenter
— How to generalize learning process?
» Automatically robot must understand
» What information or control parameter is important?




Recent works
New musculoskeletal humanoid “Kenshiroh”

More similar to human musculoskeletal structure

— Arrangement of muscles, tendon paths
* 15 muscles around hip joint

— Shape of bone structure

» Pelvis, Spines, Knee joint
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Recent works
New musculoskeletal humanoid “Kenshiroh”

* More similar to human musculoskeletal structure
— Arrangement of muscles, tendon paths
* 15 muscles around hip joint

— Shape of bone structure

* Pelvis, Spines, Knee joint
ol




Kenshiro's new actuator idea.
planer Mmuscle Osada, et.al. Humanoids2011

Back Ground

Enhanced




Thank you!

Outdoor Experimentation
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