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I. INTRODUCTION

In this abstract, we consider a novel approach to control the
timing of motions when these are encoded with autonomous
dynamical systems. Accurate motion timing is highly impor-
tant if a robot has to synchronize its movements with the
dynamics of a moving object. In previous work of ours [1],
we developed an approach to learning motion dynamics from
demonstrations performed by a human user. Encoding motions
as autonomous dynamical systems(DS) provides an efficient
way to generate and adapt motions to external perturbations,
while ensuring high accuracy at the target.

Catching an object on the fly requires very accurate estimate
of the dynamics of motion of the object. This depends on
accurate sensing which cannot always be ensured in robotics.
One thus needs to quickly-adapt the planned trajectory so as
to catch the object on time when receiving a novel (more
accurate) estimate of the object’s motion. DS encoding offers
a very powerful way to recompute on-the-fly trajectories, while
ensuring that both the dynamics is correctly regenerated.

Here, you investigate the ours of DS to encode control
of the motion’s duration so as to speed up or slow down
a motion during reproduction and therefore to adhere to
temporal constraints. We validate the proposed method in an
experiment where the i-Cub robot learns to catch a ball on the
fly.

II. ALGORITHM OVERVIEW

A motion representation is learned as a first-order au-
tonomous dynamical system:

˙̂
ξ = f̂ (ξ) , (1)

where ξ defines the configuration of the robot’s end-effector
in the task space ξ = [x; o; ρ], x ∈ R3, o ∈ R2 , ρ ∈ [0..1]
are respectively the Cartesian position, the palm direction, and
the degree of grasping (a normalized one-dimensional variable
characterizing the clench of the robot’s hand); ξ̇ = [ẋ; ȯ; ρ̇]
are the corresponding velocities. The demonstrated trajectories
together with velocities are encoded with Gaussian Mixture
Models (GMM); the estimate f̂(ξ) is further built with Gaus-
sian Mixture Regression (GMR) as the expectation of the
conditional probability; see [1] for details.

To provide a means of controlling timing along a motion,
we design a controller which allows for gradual adaptation
of the motion duration following Eq.1, for as to satisfy
synchronization constraints and to reach the target ξ∗ in a
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given time T . It control the velocity multiplier λ using a form
of PD controller:

ξti+1 = ξti + λti

L∑

l=1

˙̂
ξ{ti+

∆t
L l}∆t

L
(2)

λti+1 = λti + kp

(
T̂ ti − T

)
− kd

(
T̂ ti − T̂ ti−1

)
(3)

where ti is a time at ith controlling step, ti+1 = ti + ∆t,
t0 = 0; λti is a velocity multiplier, λt0 = 1; kp and kd

are the proportional and derivative gains respectively; T̂ ti is
an estimated motion duration starting from the beginning of
motion at time t0 as calculated at time ti; It can be estimated
by calculating Eq. 2 iteratively until the distance between ξt

and the attractor ξ∗ is smaller than user defined tolerance.
When the learned DS given by Eq.1 is modulated with the
multiplier λti , the resulting trajectory might be depart from
that original computed by the DS. To reduce a negative effect
of a too big integration step, we integrate the dynamical law
f̂ L times, before sending an actual command to the robot;
see Eq. 2.

III. EXPERIMENT: CATCHING A FLYING BALL
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Fig. 1: The robot gradually estimates the ball’s trajectory and re-
estimates the catching position and motion duration. (a),(b) If the
robot relied on the initial estimate of the ball’s trajectory, then it
would missed the ball. Gradual re-estimation of the ball’s ballistics
allows for on-line adaptation of the robot’s motion in both time and
space. (c),(d) Note, the duration of motion generated with the original
dynamics Eq.1 is longer than with the improved system Eq.1-3.



We have validated the proposed controller in an experiment
where the iCub robot catches a ball on the fly. To obtain a data-
set for training a model of the motion, a human demonstrated
forty different catching motions using a data glove and X-
Sens motion capture suit. The captured motions were mapped
into iCub joint angles in real-time, so the teacher could get an
immediate visual feedback of his actions.

For making a robot being able to catch a flying object,
one should resolve several problems, namely: 1) estimate the
ball’s ballistics to predict the timing of the robot’s motion;
2) estimate the duration of the robot’s motion and the end-
effector configuration at the catching moment; 3) generating a
task-space trajectory of the motion that satisfies temporal and
spatial constraints; 4) resolving the inverse kinematics to find
a suitable joint angle configuration. We tackle these problems
as follows.

First, the ball’s motion is modeled according to the Newto-
nian mechanics with the air drag, and a trajectory of the ball
is estimated using Kalman filter [2]. Second, the catching time
and position are chosen as to minimize the motion of the end-
effector [3], the palm direction vector is defined so as to have
a direction opposite to the ball’s velocity vector at the moment
of catching. The estimated end-effector configuration at target
is mapped into the attractor of the motion dynamics Eq.1.
The robot further starts to generate an end-effector trajectory
in the task-space. It gradually re-estimates the motion duration
by integrating the trajectory forward and adapts the velocity
according to Eq.3-2. Finally, the task-priority redundancy
control [4] is used to convert the generated positions into the
joint angles. We assign the highest priority to the hand position
and the palm direction.

The experimental results, we have obtained so far in a
simulator1, confirm that the iCub performed a catching motion
with the proposed dynamical controller manages to catch the
ball. However, the iCub in simulator couldn’t catch the ball
in most case because of the limitation of the simulation,
even though it perform the catching motion on time. You can
see the simulation result at this web link2. We are currently
implementing the experiments on the actual physical robot.
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1The simulator contains a physical model of the world and, therefore, allows
for realistic simulations

2http://www.youtube.com/ksrobot


