
Fast and Reliable Contact Computations for Grasp Planning

Young J. Kim1, Min Tang1, Zhixing Xue2 and Dinesh Manocha3

1Ewha Womans University, Seoul, Korea
2FZI, Karlsruhe, Germany

3University of North Carolina at Chapel Hill, U.S.A.

1. Introduction

Grasp planning is a key problem in robotics. One of the goals is to find suitable forces and
torques for an object through contact points for a robotic hand to grasp that object. At a
broad level, there are two classes of grasp planning algorithms that are used to determine
the relationship between the contact points and finger joint positions. The forward methods
simulate the motion of the hand and finger closing and involves use of collision detection
methods to calculate the contact points. On the other hand, the backward methods first
locate the contact points on the object surface and compute the feasible finger joint
positions using inverse kinematics on the articulated model of the finger. The main
drawback of the backward methods is that collisions between the hand and the environment
during the inverse kinematics computation and finding collision-free configurations can be
non-trivial. On the other hand, the forward method can easily find grasp configurations
without any collisions with the environment. In earlier work, one of the major issues with
respect to forward grasp planning methods was finding the contact points for multi-fingered
robotic hands, as it was regarded as a time consuming computation and susceptible to
robustness issues.

The problem of collision detection has been extensively studied in robotics, computer
graphics and simulations over the past three decades. In particular, detecting collisions or
contacts between static solid models is considered as a very well studied problem in the
literature, and optimized algorithms and robust implementations are available. An extensive
survey on the field can be found in [7]. When an object moves along some continuous
trajectory, a conventional way of detecting a collision against obstacles is to sample the
trajectory and check for collisions at discrete intervals, also known as discrete collision
detection (DCD). However, without high sampling rates, the DCD method may miss a
collision.

More recently, collision checking techniques based on continuous collision detection
(CCD) have been developed to cope up with the collision miss problem for objects under
motion. In this setting, the motion trajectory of an object is taken into account, and if a
collision does occur during the trajectory, the first time of collision (or contact) is calculated
between the moving object and obstacles.

In this extended abstract, we give a brief survey of our recent work on devising efficient
CCD algorithms for rigid, articulated models as well as deformable models. We also illustrate
how we can successfully integrate the CCD algorithms into robotic grasping, so that the
grasping algorithm can be very effective in terms of contact computations.

2. Continuous Collision Detection

Given a model at the initial and final configurations in space, our CCD algorithm first
interpolates the two configurations with a linear motion trajectory in the configuration
space. Then, the CCD algorithm detects whether a collision occurs during the entire motion.



If a collision does occur, our algorithm computes the first time of collision of against all
other obstacles in space.

We start this section by explaining a basic idea of our CCD algorithm based on conservative
advancement (CA) for rigid, convex models and then extends it to articulated and
deformable models later.

2.1. Rigid Models

Conservative advancement (CA) is a simple algorithm to calculate the first time of contact
between two convex objects and . The CA calculates a tight lower bound of by

repeatedly advancing toward an obstacle by the time step size of while avoiding
collisions [1][2]. Here, is calculated based on the minimum distance between at
time and , , and an upper bound of the motion of projected onto the

direction of (also see Fig. 1):

(1)

The above procedure is iterated until . Then, the time of contact is

.

Figure 1. Conservative Advancement for Convex Models.

Eq. 1 works only for convex objects. However, in [3], we have extended the CA method to
polygon-soup models by using bounding volume hierarchies (BVHs) based on swept sphere
volumes (SSV) [4]. Since these SSVs are convex object, Eq. 1 is still applicable; the
distance between SSVs can be easily obtained based on [4], and in [3], we have presented
an efficient formula to compute the motion bounds for SSVs.

Moreover, in [3], we described a novel scheme, known as controlled conservative
advancement (C2A), that automatically selects the depth of BVH traversal to speed up the
CA computation. The main idea is that during the first few CA iterations, we do not compute
the closest distance exactly, thus the depth of BVH traversal is adjusted to a small value.
However, toward the final CA iterations, we compute exact distance utilizing the full BVH. In
practice, our CCD algorithm takes 2.8 msec for rigid models consisting of 70K triangles.

2.2. Articulated Models

One can trivially extend the CA for rigid models to articulated models by treating the
individual link in the articulated model as an independent rigid body. However, there are
two issues for this naive approach. First of all, some of these links may not be colliding



during the motion. These are redundant links. Secondly, some links may be collided later
than other links. These links are also redundant since we are interested in the first time of
contact. We address the first problem by computing the tight bounding volume of a moving
link based on the Taylor models and culling away redundant links. The second problem can
be alleviated by sorting the time of contacts based on their estimates. The first technique is
referred to as spatial culling and the latter as temporal culling [5].

In practice, our CCD algorithm can find the first time of contact between links (self-
collision) as well as between a link and obstacles in 2.23 msec for an articulated model
consisting of 20K triangles and 15 links against an environment consisting of 101K triangles,
as shown in Fig. 2.

(a) Walk (b) Exercise

Figure 2. CCD for Articulated Models. For an articulated model consisting of 15 links
and 20K triangles, and a chessboard environment consisting of 101K triangles, our CCD

algorithm takes 2.23 ms (a) and 1.21ms (b).

2.3. Deformable Models

CA also can be used for deformable models based on local advancement [6]. The basic idea
is still based on Eq. 1, but the underlying interpolatory motion is not in SE(3) any more. In
this case, we use a linear line segment connecting deforming vertices in work space. The
rest of points on the deforming model are linearly interpolated. Now, Eq.1 for deformable
models boils down to computing the motion bound for primitives, feature pairs and
bounding volumes. In [6], we have presented an efficient method to calculate these bounds.
In practice, our CCD algorithm takes 792 msec for deformable models consisting of 252K
triangles.

3. Application to Grasp Planning

Our CCD algorithms have been integrated into the widely used grasp simulator GraspIt! [8]
to plan feasible grasps. The Schunk Anthropomorphic Hand with 17 joints is used for our



experiment and modeled as an articulated model with 18 links with 17 DOFs. The four
identical fingers as a separate kinematic chain are attached to the palm. In the simulation,
the hand as a predefined shape moves from a starting position along an approach direction
towards the object. At the hand pose, where the first contact point is detected by our CCD
algorithm, the finger closing process is performed. The finger joints are moved from the
positions defined in the preshape to their maximal bending angles. As the CCD algorithm
finds only the first contact point during this motion, multiple CCD calls are needed to find all
the possible contact points. We move each finger separately to close the object. After a
contact point is detected by the CCD algorithm, the finger link in contact is marked as
"stopped". The rest of the finger links in the same kinematic chain as the colliding link are
moved at the next continuous collision checking. After all the finger links are marked as
"stopped", the object is enclosed by the hand. The detected contact points are used to build
a 6D grasp wrench space to compute the maximum external disturbance force that the
grasp can resist, which is evaluated as the grasp quality. Grasping forces are computed for
stable grasps to grasp the object firmly.

The motions of hand movement and finger closing of the grasp planning are known a priori
[9]. In the approach phase, the fingers in grasp preshape do not move, whereas the hand
translates along an approach direction towards the object. In finger closing phase, the hand
poses does not change. The finger joints are moved to the maximum bending angles. Based
on this observation, we have improved the performance of contact computation for grasp
planning. In more detail, since both the hand motion relative to the starting position and the
finger motion relative to the palm are fixed, we can precompute the bounding box of the
swept volume with respect to the motion. In case of hand motion, the swept volume of each
finger link for the translational motion are computed. In case of finger closing, the swept
volumes are recursively generated. The volume of the link is rotated by every affecting
joints, so that the resulted swept volume represents the volume that can be reached by this
finger link. These bounding boxes are shown in Fig. 3. If the object does not collide with
these bounding boxes, it is unreachable for the hand and thus no further collision checking
is performed.

We have intensively used the aforementioned CCD algorithm to find feasible grasps for
more than 100 household objects [10] using different multi-fingered robotic hands. Some
results of single-handed grasping, bimanual grasping, pick-and-place in a complex
environment are shown in Fig. 4. On average, our modified GraspIt! algorithm with the CCD
algorithms is about five time faster than the original algorithm with discrete collision
detection.



Figure 3. Bounding Boxes of Swept Volumes for Finger Links. These bounding boxes
are used to cull the objects that the hand can not reach.



Figure 4. Virtual and Real Robotic Experimental Results of Planned Grasps with our
CCD Algorithm.

4. Conclusions

We have presented efficient CCD algorithms for rigid, articulated and deformable models,
and have showed how these algorithms can be used to accelerate grasp planning in terms
of contact computations and stable grasps. We have measured the performance of our CCD
and grasp planning algorithms applied to different objects. The integrated grasp planning
algorithm considerably improves the state-of-the-art. In the future, we would like to extend
our grasp planning algorithm to deformable objects including soft objects and cloth-like
objects.

References

[1] M. C. Lin, “Efficient collision detection for animation and robotics,” Ph.D.
dissertation, University of California, Berkeley, CA, Dec. 1993.
[2] B. V. Mirtich, “Impulse-based dynamic simulation of rigid body systems,” Ph.D.
dissertation, University of California, Berkeley, 1996.
[3] M. Tang, Y. J. Kim, and D. Manocha, “C2A: Controlled conservative
advancement for continuous collision detection of polygonal models,” Proc. of IEEE
Conference on Robotics and Automation, 2009.
[4] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast proximity queries with
swept sphere volumes,” Department of Computer Science, University of North Carolina,
Tech. Rep. TR99-018, 1999.
[5] X. Zhang, S. Redon, M. Lee, and Y. J. Kim, “Continuous collision detection for
articulated models using Taylor models and temporal culling,” ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2007), vol. 26, no. 3, 2007.
[6] M. Tang, Y. J. Kim, and D. Manocha, “Continuous Collision Detection for Non-
rigid Contact Computations using Local Advancement,” Proc. of IEEE Conference on
Robotics and Automation, 2010.
[7] M. Lin, and D. Manocha, Collision and proximity queries. In Handbook of
Discrete and Computational Geometry, 2003.
[8] A. Miller and P. Allen, "Graspit! a versatile simulator for robotic grasping," Proc.
of IEEE Robotics & Automation Magazine, 2004.
[9] Z. Xue, P. Woerner, J.M. Zoellner, and R. Dillmann, "Efficient grasp planning
using continuous collision detection," Proc. of IEEE Conference on Mechatronics and
Automation, 2009.



[10] Z. Xue, A. Kasper, J.M. Zoellner, and R. Dillmann, "An automatic grasp
planning system for service robots," Prof. of 14th Conference on Advanced Robotics,
2009.


