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Hand Research Motivation

e Understanding of the biomechanics and neuromuscular
controls of hands

e Design of next generation robotic hands

intelligent among animals. (I think) it is correct to say that because of
his intelligence he has hands”

[Bicchi, 95]
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Human Hand- Biomechanics

 High DOF
— Independent and coupled

e Unique tendon arrangement

— Long tendons

— Network of tendons that slides over bones

e Multi-articulate muscles

— Intrinsic and extrinsic

www.mmi.mcgill.ca
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Human Hand- Neuromuscular controls

e Alarge portion of the primary
motor cortex is devoted to hand
control

e Tens of thousands of tactile
Sensors

Sensing
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Biomechanical Investigations

 Many unanswered questions in biomechanics and neural
controls

e Qur approach
— Human subject studies

— Mathematical modeling
— Robot hand design and development




ReNeu Robotics Lab

Anatomical Robotic Hand

e Onimpmpecbabbrigéancl ivarelviallg diffesefttfaoen any other existing

- PBRsAAENBaY-Offs:
o A rabohimbeved daitbriayl anatomical features

e Understanding of human hand




ReNeu Robotics Lab

ACT Video
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Passive Behavior in the ACT Hand
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Study 1: Contribution of Passive Torques

e Coordinated hand and finger movements

e Conducted experiments with
human subjects
e 5 male and5 female subjects
* More than 50 trials for each
subject
e Modeling to passive and
dynamic torques

[Deshpande et al., submitted, '10 ]
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Mathematical model of torques at MCP joints

e Total torques at MCP joint is composed of dynamic and
passive (visco-elastic torques)

 Torque are functions of finger and wrist angles
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Modeling of Stiffness Torque

Measured finger tip forces at various finger and wrist angles
Flexion-extension of both wrist and finger
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Modeling of Stiffness Torque

Derived a double exponential model of stiffness torque as a
function of finger and wrist angles
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Coordinated Finger-Wrist Movements

 Moving finger and wrist together in sweeping motions
* In-phase (IP) and out-of-phase (OP)
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Coordinated Finger-Wrist Movements Joint Angles

e Recorded data with Vicon motion capture system
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Coordinated Finger-Wrist Movements Joint Angles

 Finger and wrist angle variations
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Stiffness Torques Dominate

e Total torque is much higher during IP than OP

Dynamic torque contribution is very low

red — stiffness, blue - damping, black - dynamic
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TTotal = Tdyn T Tpassive

Tpassive — Tstif f T Tdamp — Tstiff + b'gf 3

Relative contributions depend on type of movements and
speed

* Dynamic torque contribution is never more than 11%
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Implications: Neuromuscular Controls and
Robotics

Human Hands
e CNS must have an internal model of passive behavior
e Must take advantage during dynamic manipulation tasks

e Shoulder-elbow movements studies show that dynamic torques
dominate
e Itis predicted that CNS models dynamic torques

Robotic Hands

e |t may be necessary to incorporate passive behavior in robotic
hands

e How? - software, hardware, location...
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Study 2

Contributions to Passive Stiffness

e Two separate contributors to
passive stiffness torques at a
joint

— Musculotendon units (MTUs)
— Joint soft tissues

Joint tissue

MTU

www.mmi.mcgill.ca
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MTU contributions to passive torque < 50%

e Result reveal explicit contributions of MTUs and joint tissues
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c: Hiiman and Rnhntir HanAdc
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Imnlicatinn
Hllbu LIV
Human Hands
e Soft tissue stiffness may provide injury projection
e Soft tissue stiffness is NOT controllable so

e MTU may compensate by active stiffness control — co-contraction

e CNS must have an internal model of passive behavior

Robotic Hands

e May be necessary to incorporate joint passive behavior in
robotic hands

e Hardware implementation and software controls
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Next Steps

Human subject experiments to
model human hand joint damping

Building robotic hands with

. . . Bt
compliant joints -
— Stiffness and damping properties - MCF
— Programmable compliance ; S
A
iZh

[Deshpande et al in JBiomech]



