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Grasping Research

• Traditional robot grasping research focuses
on geometric reasoning.
– Geometric object shape, grasp points and

forces, zero net force and torque, etc.

• Current directions  (all very exciting):
– Dexterous, compliant hands
– Integrated haptic sensing
– Learning to grasp



Learning How to Grasp
• It’s a nice supervised learning problem.

– The world provides supervision:
• each attempt to grasp succeeds or not.

– We still need problems easy enough to learn.

• Learning about objects, and learning about actions
(including grasping), happen together.

• For clues on how to learn how to grasp
– observe the most powerful learning agent the world

has ever known.



The Most Powerful Learning Agent



What do we see here?
• The baby is eight months old

– Quite competent, but still has a lot to learn.

• Compliant, whole-hand grasping
– Trial and error, not careful planning

• Failure and recovery
• Hand-to-hand passing
• Exploration of object properties
• Exploration of actions

• Let’s explore a more complex object.



Exploring a more complex object



What do we see here?

• More trial-and-error grasping
– Opportunistic capture of the object
– Has he learned a strategy?  Hard to say.

• More hand-to-hand passing
• Exploring the object in pose space

• Onward to tool use



Using an object as a tool



Exploring actions systematically



Exploring un-grasping



Exploring a new object



What can we learn from this?
• A short segment in a learning sequence:

– the child is 8 months old;
– the palmar reflex is long gone.

• Learning about objects and learning about
actions are closely intertwined.

• Focused, attentive, autonomous learning
– Exploration, not goal-oriented.

• Q:  What is the intrinsic motivation that
drives this exploration?
– Leads to increasing competence.



What does the baby learn?
• What is the content of the knowledge that

the baby acquires from its learning?

• Claim:  this knowledge can be separated
into distinct aspects.
– A “semantic hierarchy” provides a finer-

grained description of the types of knowledge
involved.

– Learning each level of the hierarchy is easier.



The Spatial Semantic Hierarchy
• Distinguish scales of behavioral space.

– Small-scale space
• Within the agent’s sensory horizon

– Large-scale space
• Beyond the agent’s sensory horizon

• Distinguish ontologies for spatial maps.
– Metrical mapping:

• Within a single frame of reference, define location,
heading, pose, distance, and shape.

– Topological mapping:
• Places, paths, and regions are related by

connectivity, order, and containment.



Local Metrical Mapping Works
• In small-scale space, modern SLAM methods

work extremely well with lasers.
– Great progress with visual SLAM.
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Global Metrical Mapping Is Hard
• Within a single global frame of reference over

large-scale space, errors accumulate.
– Sufficiently large loops are always a problem.
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Identify the Local Topology
• Identify the local decision structure of each

place neighborhood.
– Travel experience as graph exploration
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Local Decision Structure
• Identify gateways and path fragments

– 2 gateways & 1 path fragment ⇒ on a path
– Otherwise ⇒ at a place neighborhood
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Build the Global Topological Map
• Decide when and how loops are closed

– When does the next place match a previous place?
• Build a tree of all possible topologies
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Global Metrical Map
• Use the topological map as a skeleton.

– Lay out places in a single global frame of reference.
– Fill in the details from local places and segments.
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Build the Global Metrical Map
on the Topological Skeleton



What have we got?
• Four representations for navigable space

– Agent can learn them, or be told
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Human-Robot Interaction
• Different kinds of human instructions map to

different spatial knowledge representations

“To the kitchen”
“Doctor’s office”

Select map pointLarge-scale
space

“Turn right”
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Hierarchies of Representations
• Spatial Semantic Hierarchy (SSH)

• Local Metrical Mapping
• Local Topological Maps
• Global Topological Map
• Global Metrical Map

– [Beeson, Modayil & Kuipers, IJRR, 2010]

• Object Semantic Hierarchy (OSH)
• Static 2D background model
• 2D foreground object in 2D image space (2D2D)
• 2D foreground face with pose in 3D space (2D3D)
• 3D object with 2D faces in 3D space (3D3D)

– [Xu & Kuipers, 2009; Xu, Kuipers & Murarka, 2009]



Build a Static Background Model

• Identify background model b.  xt is constant.

• Foreground is treated as noise:  part of ε1.



Identify Foreground Object

• Cluster and track in ε1 to define foreground.
– Identify constant property (e.g., average color)

• Deviations from average color are part of ε2.
– Shape and pose are time-varying properties.



Identify Planar Facets on Objects

• Many objects have near-planar facets.
– Identify c: constant surface texture and boundary,

and time-varying surface normal (pose qt).



3D Constellations of 2D Facets

• 2D object facets with constant relative
pose can represent 3D object shape.
– Constant 3D object model m.
– Only 3D object pose xot is dynamic.



An Action Semantic Hierarchy?
• Identify contingencies:

– Events Ek are defined by qualitative state changes.
– Learn new landmarks for better qualitative states.

• Learn contexts C to increase reliability.
– Express as dynamic Bayes nets (DBNs).

• Define options for reinforcement learning:
– how to achieve a reliable context,
– then act to make the antecedent event happen,
– to cause the consequent event:  an action.

• QLAP:  [Mugan & Kuipers, 2007, 2008, 2009]



Actions in Visual Space

• Agent needs to learn how to assemble low-level motor
signals into high-level actions.
– Starting from “blooming, buzzing confusion”

• Objects are identified based on sensory changes.
– Actions are what make changes happen.

• Work with Jonathan Mugan (U. Texas, Austin)



Learn Action Models

• Learn dynamic Bayesian network (DBN) models
for the effects of actions.

• Once reliable (i.e., low entropy), define options to
achieve effect of DBN models.
– These options define the next higher level of actions.



Learning Contingencies

• Grey: reliability; Yellow: contingency;  Green: deterministic



Learn to Make Hierarchical Plans

• Lowest-level actions defined directly with motor signals.
• Higher-level actions defined as options over lower-level

actions.
• And so on.



Growing graph of goals and actions

• The graph grows with experience.



Grasping is a Special Action
• We are only just beginning to learn to grasp.
• But this is how to learn actions, we think,

including grasping.
– Learn like a (stereotyped) baby.
– Start without semantics, even of body space.
– Learn contingencies from motor babbling.

• The palmar reflex helps constrain the search space.
– Search for near-deterministic contingencies.
– Learn a lattice of actions and events.

• A semantic hierarchy for actions.
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Learning to Grasp is Hard
• Infants take months to learn to grasp well.

– Evolution provides the “palmar reflex”
• Tickling the palm causes flexion of the fingers.
• Present at birth.  Disappears by 5-6 months.

– Reduces the “motor babbling” search space.
• Random motion causes contact with object.
• Palmar reflex causes finger flexion:  grasp.
• Learn effect of grasp action.
• Learn to grasp as intentional action.



Levels of object representation
• Multiple representations provide robustness.

– “Blooming, buzzing confusion”
•

– Static background model
• dynamic change is treated as noise.

– 2D foreground objects against 2D background
• “blobs” are easy to track and characterize

– each 2D object face has a pose in 3D space
• learn constant surface properties of each face

– 3D objects are constellations of 2D faces
• learn constant relations between face poses

• Work with Changhai Xu (U. Texas Austin)


