How Shall We Learn How to Learn How to Grasp?

> Benjamin Kuipers University of Michigan

Grasping Research

- Traditional robot grasping research focuses on geometric reasoning.
 - Geometric object shape, grasp points and forces, zero net force and torque, etc.
- Current directions (all very exciting):
 - Dexterous, compliant hands
 - Integrated haptic sensing
 - Learning to grasp

Learning How to Grasp

- It's a nice supervised learning problem.
 - The world provides supervision:
 - each attempt to grasp succeeds or not.
 - We still need problems easy enough to learn.
- Learning about objects, and learning about actions (including grasping), happen together.
- For clues on how to learn how to grasp
 - observe the most powerful learning agent the world has ever known.

The Most Powerful Learning Agent

What do we see here?

- The baby is eight months old
 - Quite competent, but still has a lot to learn.
- Compliant, whole-hand grasping
 - Trial and error, not careful planning
- Failure and recovery
- Hand-to-hand passing
- Exploration of object properties
- Exploration of actions
- Let's explore a more complex object.

Exploring a more complex object

What do we see here?

- More trial-and-error grasping
 - Opportunistic capture of the object
 - Has he learned a strategy? Hard to say.
- More hand-to-hand passing
- Exploring the object in pose space
- Onward to tool use

Using an object as a tool

Exploring actions systematically

Exploring un-grasping

Exploring a new object

What can we learn from this?

- A short segment in a learning sequence:
 - the child is 8 months old;
 - the palmar reflex is long gone.
- Learning about objects and learning about actions are closely intertwined.
- Focused, attentive, autonomous learning

 Exploration, not goal-oriented.
- Q: What is the intrinsic motivation that drives this exploration?
 - Leads to increasing competence.

What does the baby learn?

- What is the content of the knowledge that the baby acquires from its learning?
- Claim: this knowledge can be separated into distinct aspects.
 - A "semantic hierarchy" provides a finergrained description of the types of knowledge involved.
 - Learning each level of the hierarchy is easier.

The Spatial Semantic Hierarchy

• Distinguish scales of behavioral space.

– Small-scale space

- Within the agent's sensory horizon
- Large-scale space
 - Beyond the agent's sensory horizon
- Distinguish ontologies for spatial maps.

- Metrical mapping:

- Within a single frame of reference, define location, heading, pose, distance, and shape.
- Topological mapping:
 - Places, paths, and regions are related by connectivity, order, and containment.

Local Metrical Mapping Works

• In small-scale space, modern SLAM methods work extremely well with lasers.

– Great progress with visual SLAM.

	Metrical Mapping	Topological Mapping
Small-scale space	Local SLAM	
Large-scale space		

Global Metrical Mapping Is Hard

• Within a single global frame of reference over large-scale space, errors accumulate.

- Sufficiently large loops are always a problem.

	Metrical Mapping	Topological Mapping
Small-scale space	Local SLAM	
Large-scale space	Cumulative errors Scalability	

Identify the Local Topology

• Identify the local decision structure of each place neighborhood.

- Travel experience as graph exploration

	Metrical Mapping	Topological Mapping
Small-scale space	Local SLAM 🗖	Local decision structure
Large-scale space		

Local Decision Structure

- Identify gateways and path fragments
 - -2 gateways & 1 path fragment \Rightarrow on a path
 - Otherwise \Rightarrow at a place neighborhood

in small-scale space

in large-scale space

Build the Global Topological Map

• Decide when and how loops are closed

– When does the next place match a previous place?

• Build a tree of all possible topologies

	Metrical Mapping	Topological Mapping
Small-scale space	Local SLAM 🖵	Local decision structure
Large-scale space		Global topological map

Global Metrical Map

- Use the topological map as a skeleton.
 - Lay out places in a single global frame of reference.
 - Fill in the details from local places and segments.

	Metrical Mapping	Topological Mapping
Small-scale space	Local SLAM 🖵	Local decision structure
Large-scale space	Global metrical map	Global topological map

Build the Global Metrical Map on the Topological Skeleton

What have we got?

• Four representations for navigable space

– Agent can learn them, or be told

	Metrical Mapping	Topological Mapping
Small-scale space	Local map for	Well separated decision points
Large-scale space	Heuristics to guide planning	Scalable map for route planning

Human-Robot Interaction

• Different kinds of human instructions map to different spatial knowledge representations

	Metrical Mapping	Topological Mapping
Small-scale space	"Go there" "To my desk"	"Turn right" "Second left"
Large-scale space	Select map point	"To the kitchen" "Doctor's office"

Hierarchies of Representations

- Spatial Semantic Hierarchy (SSH)
 - Local Metrical Mapping
 - Local Topological Maps
 - Global Topological Map
 - Global Metrical Map
 - [Beeson, Modayil & Kuipers, IJRR, 2010]
- Object Semantic Hierarchy (OSH)
 - Static 2D background model
 - 2D foreground object in 2D image space (2D2D)
 - 2D foreground face with pose in 3D space (2D3D)
 - 3D object with 2D faces in 3D space (3D3D)
 - [Xu & Kuipers, 2009; Xu, Kuipers & Murarka, 2009]

Build a Static Background Model

- Identify background model *b*. x_t is constant. $z_t = G_1(b, x_t) + \epsilon_1$
- Foreground is treated as noise: part of ε_1 .

Identify Foreground Object

- Cluster and track in ε_1 to define foreground.
 - Identify constant property (e.g., average color)
 - Deviations from average color are part of ε_2 .
 - Shape and pose are time-varying properties.

$$z_t = G_2(b, o, x_t, s_t) + \epsilon_2$$

Identify Planar Facets on Objects

- Many objects have near-planar facets.
 - Identify c: constant surface texture and boundary, and time-varying surface normal (pose q_t).

$$z_t = G_3(b, c, x_t, q_t) + \epsilon_3$$

3D Constellations of 2D Facets

- 2D object facets with constant relative pose can represent 3D object shape
 - Constant 3D object model m.
 - Only 3D object pose x_{ot} is dynamic.

 $z_t = G_4(b, m, x_t, x_{ot}) + \epsilon_4$

An Action Semantic Hierarchy?

- Identify *contingencies*: $\langle C : E_1 \Rightarrow E_2 \rangle$
 - *Events* E_k are defined by qualitative state changes.
 - Learn new landmarks for better qualitative states.
- Learn *contexts C* to increase reliability.
 - Express as dynamic Bayes nets (DBNs).
- Define *options* for reinforcement learning:
 - how to achieve a reliable context,
 - then act to make the antecedent event happen,
 - to cause the consequent event: an *action*.
- QLAP: [Mugan & Kuipers, 2007, 2008, 2009]

Actions in Visual Space

- Agent needs to learn how to assemble low-level motor signals into high-level actions.
 - Starting from "blooming, buzzing confusion"
- Objects are identified based on sensory changes.
 - Actions are what make changes happen.
- Work with Jonathan Mugan (U. Texas, Austin)

Learn Action Models

- Learn dynamic Bayesian network (DBN) models for the effects of actions.
- Once reliable (i.e., low entropy), define *options* to achieve effect of DBN models.
 - These options define the next higher level of actions.

Learning Contingencies $\langle C : E_1 \Rightarrow E_2 \rangle$

• Grey: reliability; Yellow: contingency; Green: deterministic

Learn to Make Hierarchical Plans

- Lowest-level actions defined directly with motor signals.
- Higher-level actions defined as options over lower-level actions.
- And so on.

Growing graph of goals and actions

• The graph grows with experience.

Grasping is a Special Action

- We are only just beginning to learn to grasp.
- But this is how to learn actions, we think, including grasping.
 - Learn like a (stereotyped) baby.
 - Start without semantics, even of body space.
 - Learn contingencies from motor babbling.
 - The *palmar reflex* helps constrain the search space.
 - Search for near-deterministic contingencies.
 - Learn a lattice of actions and events.
- A semantic hierarchy for actions.

References

- Beeson, Modayil & Kuipers, Factoring the mapping problem: Mobile robot map-building in the Hybrid Spatial Semantic Hierarchy. *IJRR*, 2010.
- Xu & Kuipers, Construction of the Object Semantic Hierarchy. *International Cognitive Vision Workshop (ICVW)*, 2009.
- Xu, Kuipers & Murarka, 3D pose estimation for planes. *ICCV Workshop on 3D Representation for Recognition (3dRR)*, 2009.
- Mugan & Kuipers, Autonomously learning an action hierarchy using a learned qualitative state representation. *IJCAI*, 2009.
- Mugan & Kuipers, Toward the application of reinforcement learning to undirected developmental learning. *EpiRob*, 2008.
- Modayil & Kuipers, The initial development of object knowledge by a learning robot. *Robotics & Autonomous Systems*, 2008.
- Mugan & Kuipers, Learning to predict the effects of actions: Synergy between rules and landmarks. *ICDL*, 2007.
- Savarese & Fei-Fei, 3D generic object categorization, localization and pose estimation. *ICCV*, 2007.
- Kuipers, The Spatial Semantic Hierarchy. AIJ, 2000.
- Pierce & Kuipers, Map learning with uninterpreted sensors and effectors. *AIJ*, 1997.

Learning to Grasp is Hard

- Infants take months to learn to grasp well.
 - Evolution provides the "palmar reflex"
 - Tickling the palm causes flexion of the fingers.
 - Present at birth. Disappears by 5-6 months.
 - Reduces the "motor babbling" search space.
 - Random motion causes contact with object.
 - Palmar reflex causes finger flexion: grasp.
 - Learn effect of grasp action.
 - Learn to grasp as intentional action.

Levels of object representation

- Multiple representations provide robustness.
 - "Blooming, buzzing confusion"
 - $z_t = \epsilon_0$
 - Static background model
 - dynamic change is treated as noise.
 - 2D foreground objects against 2D background
 - "blobs" are easy to track and characterize
 - each 2D object face has a pose in 3D space
 - learn constant surface properties of each face
 - 3D objects are constellations of 2D faces
 - learn constant relations between face poses
 - Work with Changhai Xu (U. Texas Austin)