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Motivation

Why learning for grasping?

• Grasping is generically data-driven!
• New objects often need to be explored
• Motions need to be adapted to the object 

➡ Two important topics are:
1. “Smart” exploration of new grasps
2. generalizing grasping movements 
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Motor Primitives

How can we learn a set of skills?

• Humans appear to rely on context-driven motor 
primitives (Flash & Hochner, 2005)

• Dynamic system-based motor primitives (Schaal, 

Peters, Nakanishi,  Ijspeert, ISRR2003) offer a computational 
alternative.

• Primitives need to be suitable for fast learning.

➡ Resulting approach:
• Initialize by Imitation Learning.
• Improve by trial and error on the real system 

with Reinforcement Learning.
• Adjust primitives using context information.

Peters et al. (2009). Towards Motor Skill Learning for Robotics, ISRR
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Motor Primtives

Local Linear
Model Approx.

Canonical 
Dynamics

Trajectory Plan
Dynamics

Linear in learnable 
Policy Parameters

(Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003)

Task/Hyperparameter
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Acquisition by Imitation

Teacher shows the 
task and the student 
reproduces it.

• maximize similarity
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Kober & Peters (2009). Learning Motor Primitives, ICRA
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Self-Improvement by 
Reinforcement Learning
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Reward-weighted Self-Imitation

+ +
++
+
++
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- - State

Kober & Peters (2009). Policy Search for Motor Primitives in Robotics, NIPS

Student improves by 
reproducing his 
successful trials.

• maximize reward-weighted 
similarity
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Motor Primtives

Local Linear
Model Approx.

Canonical 
Dynamics

Trajectory Plan
Dynamics

Linear in learnable 
Policy Parameters

(Schaal, Peters, Nakanishi, Ijspeert, ISRR 2003)

Task/Hyperparameter
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Task Context: Goal Learning

Kober, Oztop & Peters (2010). Reinforcement Learning to adjust Robot Movements to New Situations, R:SS

Adjusting Motor Primitives through their Hyperparameters:
• learn a single motor primitive using imitation and reinforcement learning
• DMPs are goal and timing invariant, hence single example suffices 
• learn policies for the goal parameter and timing parameters by reinforcement 

learning
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All of the above?
PreliminaryWork

Mülling, Kober & Peters (unpublished). Learning to Play Ping.
Kober et al. (2010). Movement Templates for Learning of Hitting and Batting, ICRA

Kober, Oztop & Peters (2010). Reinforcement Learning to adjust Robot Movements to New Situations, R:SS
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Blue Print for Skill Learning
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Peters et al. (2009). Towards Motor Skill Learning for Robotics, ISRR

Does it apply to grasping?
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Today’s Questions
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How to Explore Efficiently?

Observed
Object

Vision
Descriptors

Possible Grasps

Successful Grasps

Detry, Baseski, Popovic, Touati, Krueger, Kroemer, Peters, Piater (2009). 
Learning Object-specific Grasp Affordance Densities, ICDL
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Grasping as a Bandit Problem?

Goal: find good grasps... 
‧‧‧fast

‧‧‧by trial and error

‧‧‧without a simulated model 

‧‧‧do not stick to grasps

Appropriate Approach: 
• Upper confidence bound trades exploration & exploitation
• Gaussian Process Regression-based quality estimation
• Mean-shift inspired maxima detection

➡New Efficient Algorithms!

Krömer, Detry, Piater, Peters (submitted). Combining Active Learning and Reactive Control for Robot Grasping, Robotics and Autonomous Systems
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Modeling Success
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Modeling Success
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Choosing the Next Action

Insights

• There may be infinitely many maxima (=grasps).
• The maxima are guaranteed to be near the data points
• Find most local maxima close to the data points!

‣ Back to our example...

Krömer, Detry, Piater, Peters (submitted). Combining Active Learning and Reactive Control for Robot Grasping, Robotics and Autonomous Systems
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Detecting Maxima
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Detecting Maxima
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Evaluate Candidate
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Another attempt...
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Another attempt...
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Performance
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Rewards...

Krömer, Detry, Piater, Peters (submitted). Combining Active Learning and Reactive Control for Robot Grasping, Robotics and Autonomous Systems
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Learning Performance
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Newly found grasps...

Krömer, Detry, Piater, Peters (submitted). Combining Active Learning and Reactive Control for Robot Grasping, Robotics and Autonomous Systems
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Vision Descriptors
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Scene Vision Descriptor Representation

N. Krüger, M. Lappe, F. Wörgötter. (2004) Biologically Motivated MultimodalProcessing of Visual Primitives. J.AI&SB.
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Basic Insights

Motor primitives (DMP) allow...

• Initialization by demonstrations

• Acquire benefits of human motions:  regular, smooth 
motions, small overshoots, etc. (Jeannerod, 1996)

Local scene geometry in form of vision descriptors allow...

• incorporating proximity to objects

• preshaping the hand to the object

• avoid obstacles

Krömer, Detry, Piater, Peters (submitted). Combining Active Learning and Reactive Control for Robot Grasping, Robotics and Autonomous Systems
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Generalizing with DMPs
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Imitation allows reproducing observed movements

Krömer, Detry, Piater, Peters (submitted). Combining Active Learning and Reactive Control for Robot Grasping, Robotics and Autonomous Systems
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Generalizing with DMPs
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How can we fix this?

Generalization may cause collisions with objects...

Krömer, Detry, Piater, Peters (submitted). Combining Active Learning and Reactive Control for Robot Grasping, Robotics and Autonomous Systems
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How can we deal with this?
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DMPs are dynamic systems and can be 
modified straightforwardly by force fields!
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ECVD-based Potential Fields
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Object to Grasp
Clutter Objects
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Resulting Hand Preshaping

HandlePlane Slanted

Krömer, Detry, Piater, Peters (submitted). Combining Active Learning and Reactive Control for Robot Grasping, Robotics and Autonomous Systems
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Conclusion

Supported by

• Quick Intro to our view on Motor Skill Learning for Robotics

• Representations: 

‣ Motor primitives for actions

‣ Vision descriptors for modifying actions and context

• Resulting New Methods:

‣ Grasp-Point Exploration with Continuum-armed GB

‣ A straightforward modification to make Imitation work

• Our results appear promising!

Monday, May 3, 2010
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Thanks

Thanks for your attention!
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Stereo Camera

• New head (two identical eyes)

• Pan-tilt unit

• Semi-automatic calibration

• Software based head protection

• 3D model acquisition

42
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Simulation

• 17 degree of freedom model

• Incorporated control of hand, arm, and pan-tilt unit

• Test movements for joint limits before execution

• Simulated eye sight

• Open Dynamics Engine

43
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Grasping Experiment 
System

• Modular experiment setup

• Observing scene

• Object Pose Estimation

• Grasp Selection

• Robot Execution

• Automated data collection

• Early Cognitive Vision system

• Collaborated on experiments
44
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Robot Grasping

• Where to grasp sets context for how to grasp

• want to reflect this hierarchical structure

• Current Setup:

45
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Future Directions

• Generalize grasps between objects

• Supervised Learning

• Incorporate into architecture as initialization

• Learning for how to grasp

• Adapt grasp execution by learning

• Sequencing DMPs together for complex tasks

• Reinforcement learning

• Planning with learned operators
46
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Summary

• Autonomously improve grasp performance using 
reinforcement learning

• Grasp execution using motor primitives augmented 
by vision information

• Future plans:

• Supervised learning to generalize between objects

• Reinforcement learning for multi-action manipulation tasks

• Happy Holidays!
48
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