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Data-Driven ComputationData-Driven Computation
• Data-driven approaches solve hard problems

• Simple machine learning algorithms often outperform more 
sophisticated ones if trained on large enough databases.

N t l l t l ti ti t ti i• Natural language translation, semantic annotation, image 
reconstruction

• Bigger databases are as important as smarter algorithms• Bigger databases are as important as smarter algorithms

• Computer Vision example: Have we seen everything?

Image completion, Haye and Efros, Siggraph 2007
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Is Grasping Indexable?
•Many previous attempts to taxonomize grasps

•Is there a finite set of grasps we can pre-compute?

•If so, can we build an indexable database of grasps?

• Given a novel object to grasp, can we find a similar grasp? 

• Some Problems:Some Problems:
• Lots of objects to grasp…
• Lots of DOF in a hand (~20 + 6 in human hand)• Lots of DOF in a hand (~20 + 6 in human hand)…
• Lots of robotic hands…

I t t bl ? B t b t• Intractable?  But maybe not….
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Key Ideas: Data-Driven Grasping
• How do we generate large amounts of grasping data?• How do we generate large amounts of grasping data?

• Turn robot on in lab, feed it objects to be grasped 24/7?
Impractical and hardware is not that robustImpractical, and hardware is not that robust

• Get lots of humans to grasp lots of objects and record data?
Still li it d # f bj t d # f bj tStill limited # of subjects and # of objects

• Solution: Generate lots of data through simulation

• Use low-dimensional subspaces to make problem tractable

• Use a very large corpus of 3D objects to be grasped
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Grasp Planning in Simulation
• Simulation is fast and cheap• Simulation is fast and cheap

And allows numerical quality measures

• Offline planner is the Eigengrasp Planner*• Offline planner is the Eigengrasp Planner
Reduced dimensionality control space derived from human 
trials
Simulated annealing on
a grasp energy function
Evaluate candidatesEvaluate candidates
in GraspIt! Simulator
Converges on a good grasp

*Ciocarlie, Goldfeder, Allen IROS 2007
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Finding Objects to Grasp

• We use the 3D models from the Princeton Shape Benchmark*• We use the 3D models from the Princeton Shape Benchmark
Well known academic dataset of 1,814 models
All models resized to “graspable” sizesg p

• We provide grasps at 4 scales
…because grasping is scale dependent
7,256 3D models in all
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Robotic Hands

• We provide grasps for 4 hands• We provide grasps for 4 hands
Human hand model (20 DOF)
Barrett Hand (4 DOF + disengaging clutch)( g g g )
Barrett Hand with rubber coating
Willow Garage gripper
More hands to come!
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Building the Columbia Grasp Database
• Simulated annealing in a eigen grasp space• Simulated annealing in a eigen-grasp space
• 8 dimensions: 6 pose + 2 eigenvectors
• 1 814 objects at 4 scales =7 256 objects to grasp• 1,814 objects at 4 scales =7,256 objects to grasp
• Grasps evaluated in GraspIt! simulator for 4 hands

6 compute months on multicore workstations• 6 compute-months on multicore workstations
• Contains over 250,000 form-closure grasps

I l d t t i t d F i• Includes pre-grasp poses, contact points, and Ferrari-
Canny quality metrics

• A new tool for the grasping communityA new tool for the grasping community
• Available at grasping.cs.columbia.edu
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Browsing the CGDB*g

*Goldfeder et. al., ICRA 2009
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Data Driven Grasp PlanningData Driven Grasp Planning
• Given a new 3D model to grasp

Fi d t t i i hb i d t bFind nearest geometric neighbors in database
Can use choice of shape matchers
C ll f i hb d lCollect pre-grasps from neighbor models
Evaluate candidates in GraspIt! simulator
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Benchmarking Database Planner

Human HandBarrett Hand Human Hand

nth best grasp for data-driven & Eigengrasp planners
Database planner is also 30x faster p 3
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Grasping Novel Objects: Noisy Range Data

• Caveat: Geometric match needs full 360° scan model - notCaveat:  Geometric match needs full 360 scan model not 
usually available

• Can we grasp with only partial sensor data?
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Matching with Partial Sensor Data
• Traditional approach: register point clouds into a 3D model
• What kind of range sensor data can we really expect?

Noisy, inaccurate depth measurements
Imperfect registration between scans
Sensitive to noise and occlusions

• Better idea: match directly in sensor image space
• Find view dependent features for matching
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Data Driven Grasping Pipeline 

• Acquire partial view depth data• Acquire partial-view depth data
Must be realistic – sensors can’t see full models

• Match into database
Using only the acquired partial data

• Align the sensor data to the model
Using only the acquired partial data

• Rank grasps from matching models
How do we know which candidate to output?How do we know which candidate to output?
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Depth SIFT
• 3D matching with Depth SIFT*
• Compute SIFT on depth imagesp p g

from many views
• Describe all views with single

“bag of features” histogram“bag-of-features” histogram
• Only sees depth gradients, 

more stable than depthmore stable than depth
• Operates in natural space

of sensed depth data
• Registration-free matching

of multiple scans

* Ohbuchi et al., SMI 2008
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Training Depth SIFTg p

Render depth images

For n training models
and compute features

Gather SIFT features 
from all imagesfrom all images

Cluster into “codebook”
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Matching Using the Codebook:g g
Caps and CapSets

• Extension of Depth SIFT to partial data

• Combine views from a spherical cap rather than a sphere

• Create binary vector of codebook featuresy

• Models what can be sensed realistically

• Capθ(v) is a function of solidCapθ(v) is a function of solid 
angle θ and center view v

• A CapSetθ collects the Capθ(v) descriptorsA CapSetθ collects the Capθ(v) descriptors
of an object from all v

• CapSet4π is identical to Depth SIFTp 4π p
• Compare models by histogram similarity

Similar models should have similar histograms
W bi hi t d J d di tWe use binary histograms and Jaccard distance
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Precision/Recall of CapSets

• CapSet is indistinguishable from Depth SIFT

Precision/Recall of CapSets 

• CapSetπ is indistinguishable from Depth SIFT
And only needs to see 
¼ of a model to match!¼ of a model to match!
Almost as good with 
smaller view clusters

• Bottom Line:  Just need to 

take a few scans around atake a few scans around a

viewpoint to get good

performance

• Actively move your sensor!y y
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Aligning Partial Scans
• To transfer grasps we need alignment• To transfer grasps, we need alignment

Align full 3D models (from the CGDB) with partial
sensor data
PCA (used in our previous work) isn’t applicable to 
partial data

C b d li t th d• Cap-based alignment method
Find the Cap of the CGDB model that best 
matches the sensed datamatches the sensed data
Align the center view of that Cap with the most 
central view from the sensor
U t i t t l th ll lUse geometric moments to resolve the roll angle
Refine the alignment with ICP
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Grasp Selection
• Once we match geometrically we can retrieve manyOnce we match geometrically, we can retrieve many 

candidate grasps from nearest neighbors
But we can’t simulate and test their quality on partial 
data!data!
How do we decide which grasp to use?

• Suppose we have a candidate grasp for a modelpp g p
How generalizable is it to similar models?
We can try it on similar models in the database and 
see!see!

• We rank grasps by cross testing them
We can do this offline (less accurate but faster 
l i ) liplanning) or online
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Online Cross TestingOnline Cross Testing
• At grasp time:

Find the object’s k neighbors
Try grasps from each neighbor on the neighbors of the object
Measures how well the grasp generalizes in the neighborhood 
of the sensed object

Obj t tObject to grasp
(not in database)

Neighboring 
models
(from(from 

database)
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Full Pipeline

• Acquire a set of clustered range scans• Acquire a set of clustered range scans
Feasible for real robots in real time
No need for 360° scan coverage

• Match into database using Cap descriptors
No need to register scans!
The more views the better you can matchThe more views, the better you can match
But degrades gracefully to even a single view

• Rank grasps from matching models
Using the generalizability criterion

• Align the grasp to the partial data
Using our new alignment methodUsing our new alignment method
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Results: SimulationResults: Simulation
• Experiments with a Barrett hand and CapSetπ,

Ranking with online cross testingRanking with online cross testing
Results averaged over 
1,814 models in the CGDB
V diffi lt d l t !Very difficult models to grasp!
Grasp quality evaluated 
statically (conservative) and 
dynamically (more realistic)

• 6 experiments per model• 6 experiments per model 
6 different viewpoints
Note the tiny error bars
83% form closure within 
first 2 grasps
77% in static analysisy
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Results: Mobile Manipulator

• HERB mobile manipulator Intel Pitt• HERB mobile manipulator, Intel Pitt.

• Uses single camera, not rangefinder

• Depth SIFT not feasible• Depth SIFT not feasible

• Added visual hull silhouette shape context 
features instead of SIFT features to Capsetsp

• Scenario:
Take 3 images of object over Π steradians
CapΠ used to find 10 closest models
Each model aligned with data, reordered 
by best fitby best fit
Use cross-testing to find best grasp
Transfer grasp to objectg p j
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Partial View Graspingp g

1. Take images of 
unknown object

2. Partial view 
shape match

3. Align with 
SilhouettesSilhouettes

4. Choose best 
li d d laligned model

5. Index grasp in g p
CGDB
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ExperimentsExperiments
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Conclusion
Promising new approach to grasping• Promising new approach to grasping

• Modular:  add your objects, your robotic hand, your 
f t h t hsensor features, your shape matcher

• Problems: 
calibration important
material properties, mass assumed
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Examples: 
Grasping Novel ObjectsGrasping Novel Objects
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Offline Cross Testing

• During training:
For each database model
Score the model’s grasps by how well they transfer to the model’s 
own neighborsown neighbors

Model in database

Neighboring 
models

• At grasp time:
Find the object’s neighbors
Rank grasps from all neighbors by precomputed score
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Full Pipeline Example

Depth images of a real 
wineglass, acquired with a 

NextEngine scannerNextEngine scanner

Models from the CGDB with 
similar Cap descriptorssimilar Capπ descriptors

Alignments with the partialg p
model of the wineglass

The first 5 grasps from 
cross-test ranking
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Using Depth SIFTg p

• For each model:
Render depth images from sample views 
C S f f h iCompute SIFT features of these images
Assign each feature to the best “representative”
Output a histogram of which representativesOutput a histogram of which representatives 
appear

• Compare models by histogram similarity
Similar models should have similar histogramsSimilar models should have similar histograms
We use binary histograms and Jaccard distance


